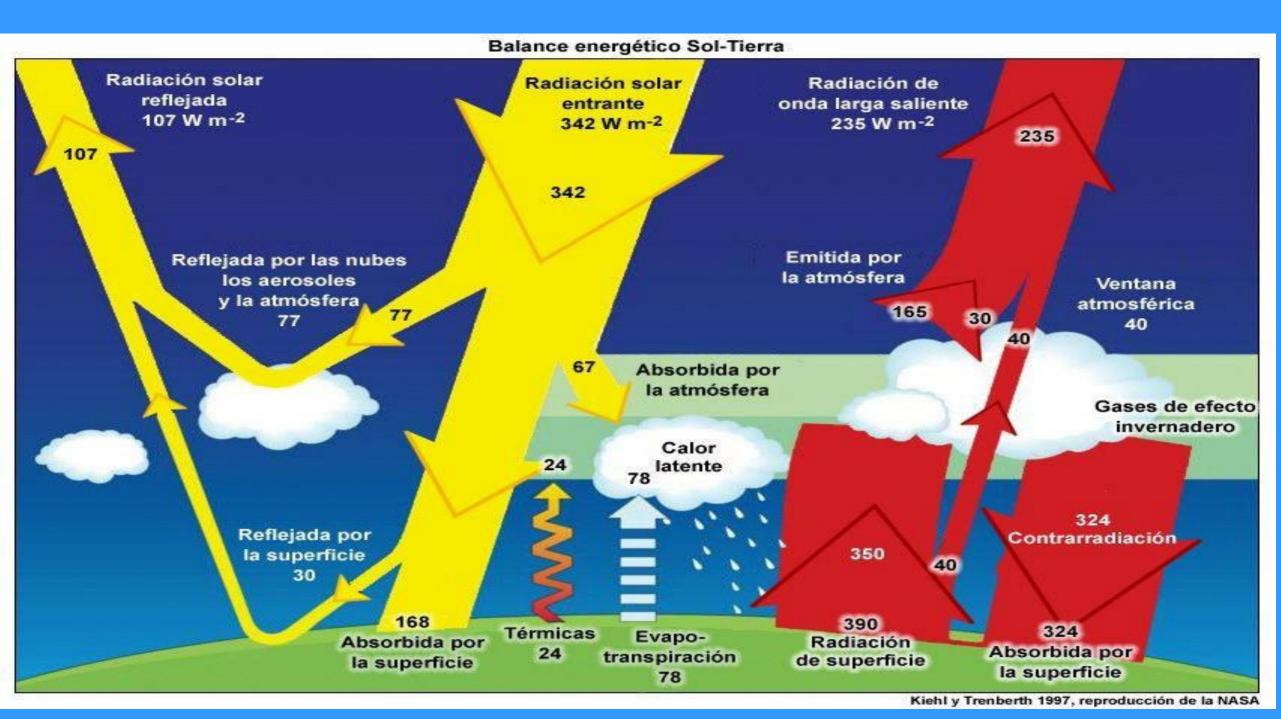
SUMIDEROS BIOLÓGICOS. SECUESTRO DE CARBONO EN AGRICULTURA

Jesús A. Betrán Aso

Ingeniero Agrónomo (colegiado 665 COIAANPV)

Director del Laboratorio Agroambiental (DGA)


Profesor Asociado Universidad de Zaragoza

Plan de Formación 2025 del Instituto Aragonés de Administración Pública

"MITIGACIÓN DEL CAMBIO CLIMÁTICO: SUMIDEROS DE CARBONO"

2025/0258-ZA

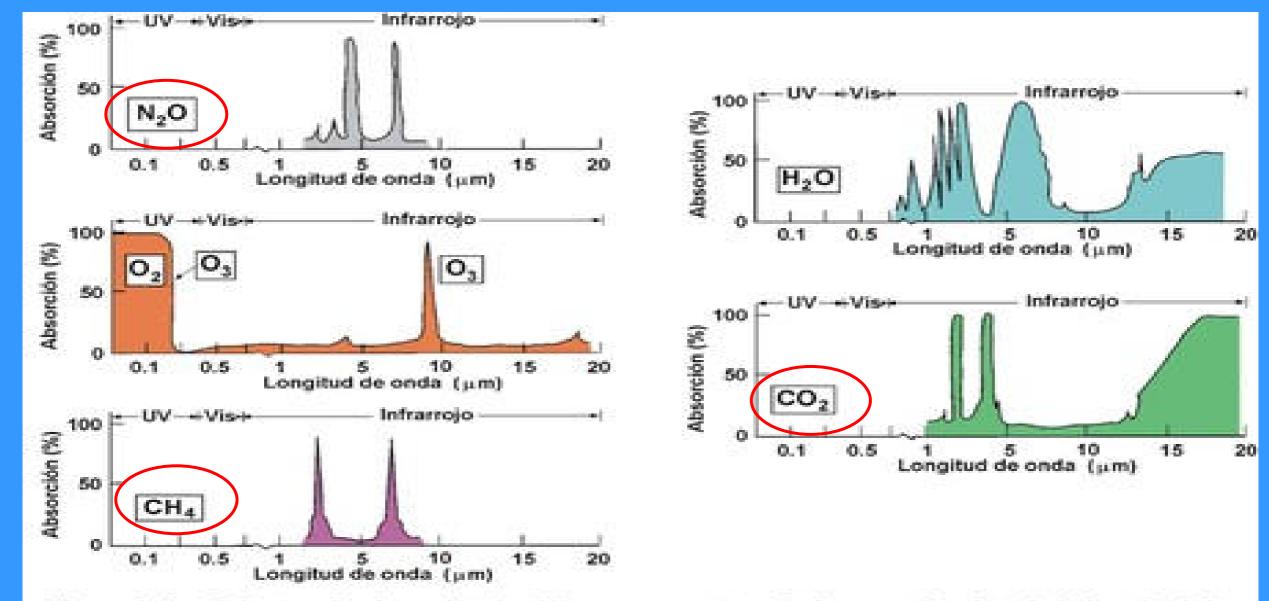


Figura 2. Coeficientes de absorción (en %) por gases atmosféricos, en función de la longitud de onda del espectro electromagnético, distinguiendose los intervalos de radiación ultravioleta (UV), visible (Vis) e infrarrojo.

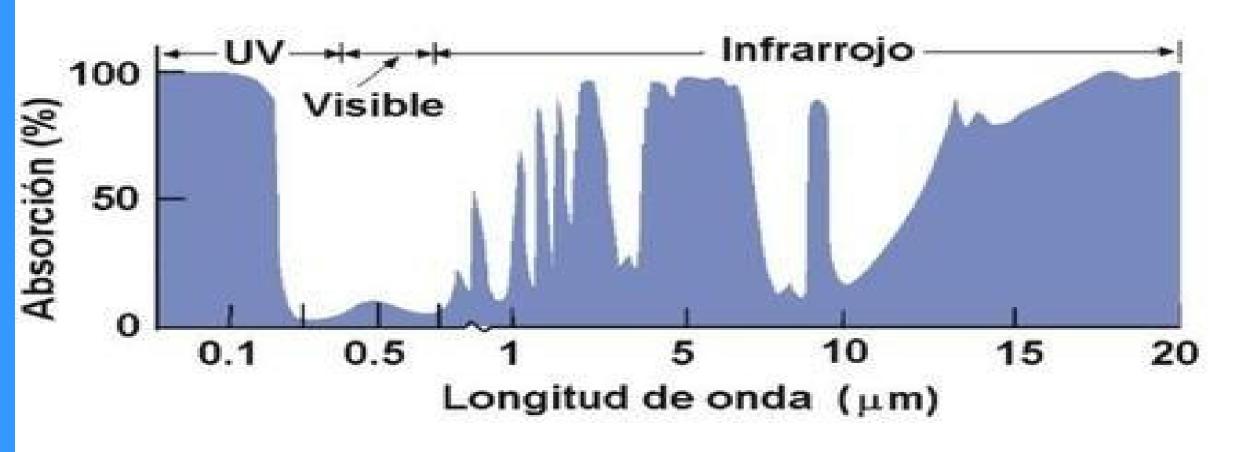
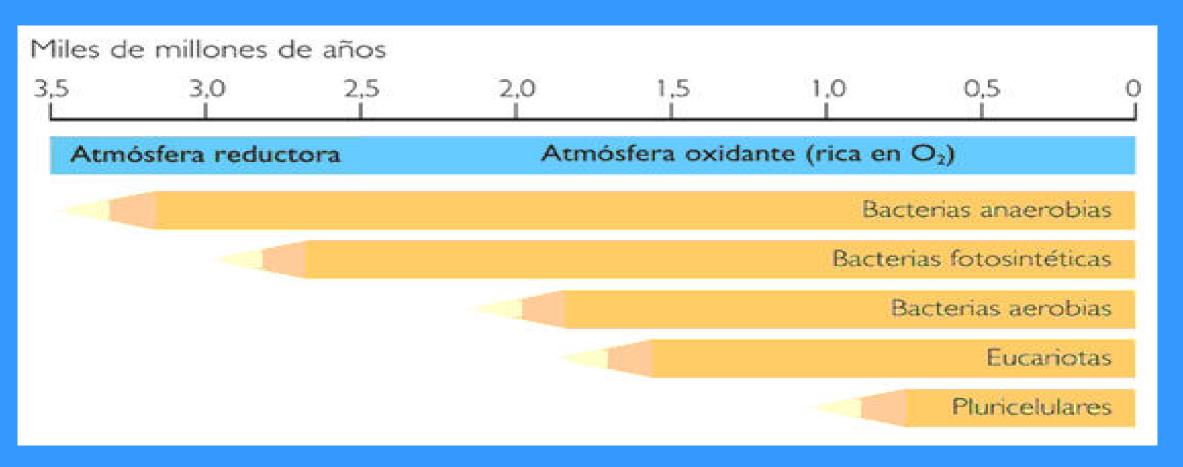



Figura 3. Absorción total de radiación por gases atmosféricos (suma de las contribuciones mostradas en la Figura 2)

¿DESDE CUANDO "TAN POCO" CO₂?

HACE 2400 Ma NO HABÍA OXÍGENO EN LA ATMÓSFERA TERRESTRE

APARECE LA FOTOSÍNTESIS

EN UNOS 2000 Ma MÁS EL OXÍGENO ALCANZA EL 21 % ACTUAL

EVOLUCIÓN DEL CO2

- Concentración atmosférica de dióxido de carbono (CO₂)
 - LA FOTOSÍNTESIS "MANTENÍA" EL EQUILIBRIO
 - NUEVA SITUACIÓN:
 - aumento constante desde la década de 1960

• 1960

317 ppm

• 2004

377,1 ppm

• 2023

supera las 421

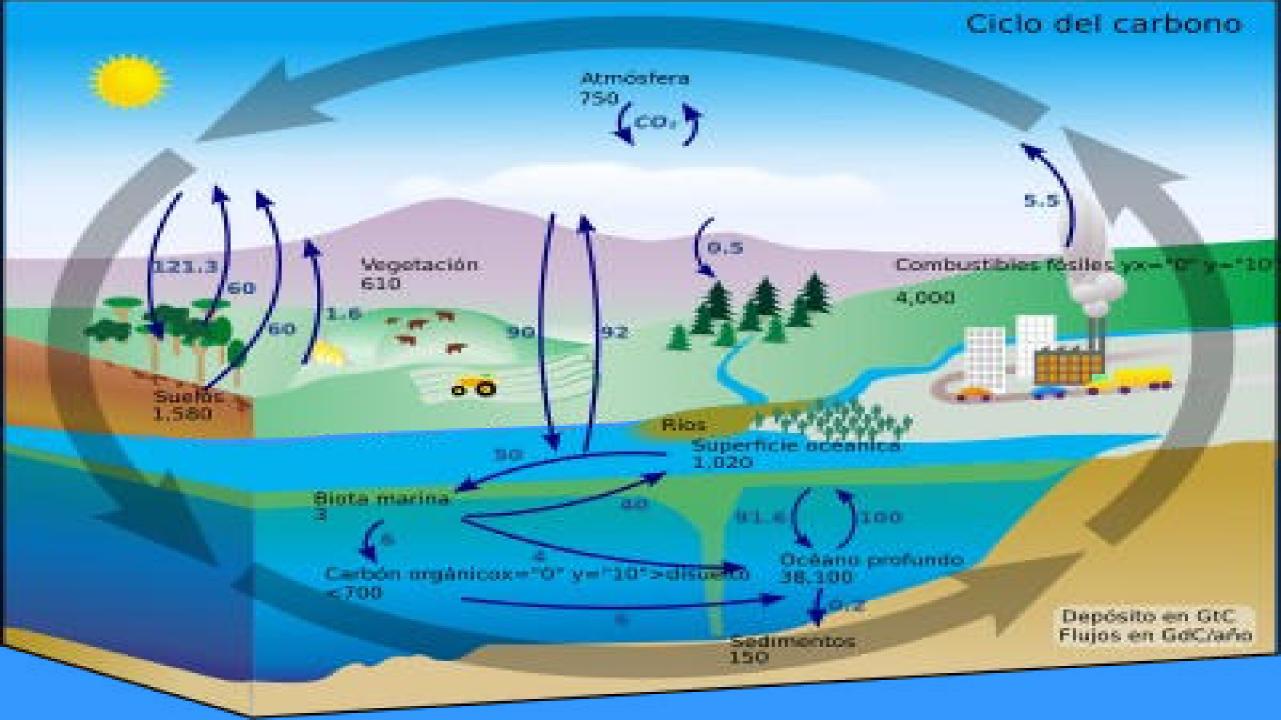
• 2024

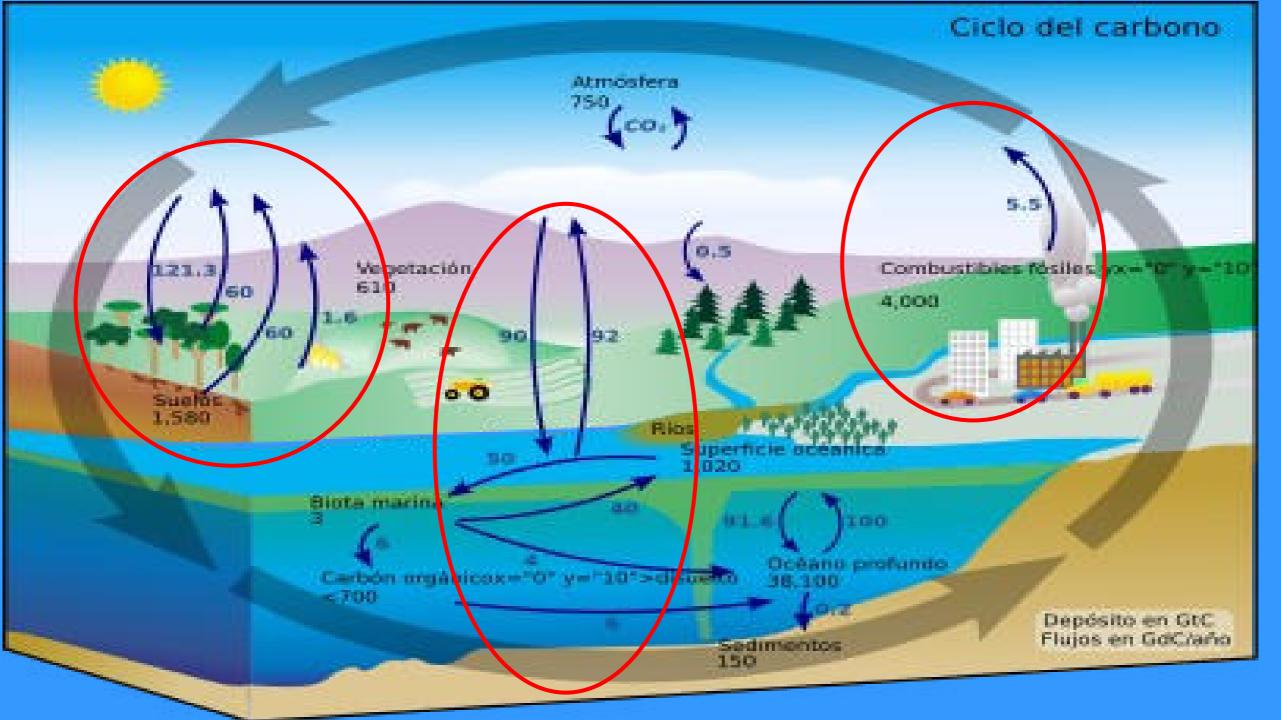
423,9 ppm

• Red de estaciones de monitoreo de la Vigilancia Atmósférica Global

EL CARBONO

- CARBONO (C)
 - 4º elemento más abundante en el universo.
 - Solo aproximadamente 0,025 % de la corteza terrestre.
- SU CICLO DESCRIBE VARIAS RAMAS:
 - CICLO BIOLÓGICO
 - FOTOSÍNTESIS
 - Muy activo
 - CICLO BIOEGOQUÍMICO
 - ROCAS CON CARBONO
 - CARBONATOS (CARBONATO CÁLCICO)
 - Prácticamente inertes
 - COMBINACIÓN DE AMBOS
 - COMBUSTIBLES FÓSILES


MÁS QUE CO₂


- CARBONO (C)
 - ELEMENTO "VITAL"
 - LA VIDA TERRESTRE ESTÁ BASADA EN EL C
 - CONSECUENCIA:
 - UNA CANTIDAD MUY IMPORTANTE DEL CARBONO ESTÁ PRESENTE EN LA TIERRA EN "SUMIDEROS" BIOLÓGICOS.
 - EL C ESTA PRESENTE EN LA VIDA Y EN SUS PRODUCTOS DE DEGRADACIÓN (CO₂).

CLAVE EN EL SOPORTE DE LA VIDA

- CICLO DEL CARBONO
 CICLO DE LA MATERIA ORGÁNICA
- CICLO DEL AGUA
- CICLO DEL NITRÓGENO

- CLAVES PARA QUE LA TIERRA SOPORTE VIDA
- · <u>.... Y PARA LA AGRICULTURA.</u>

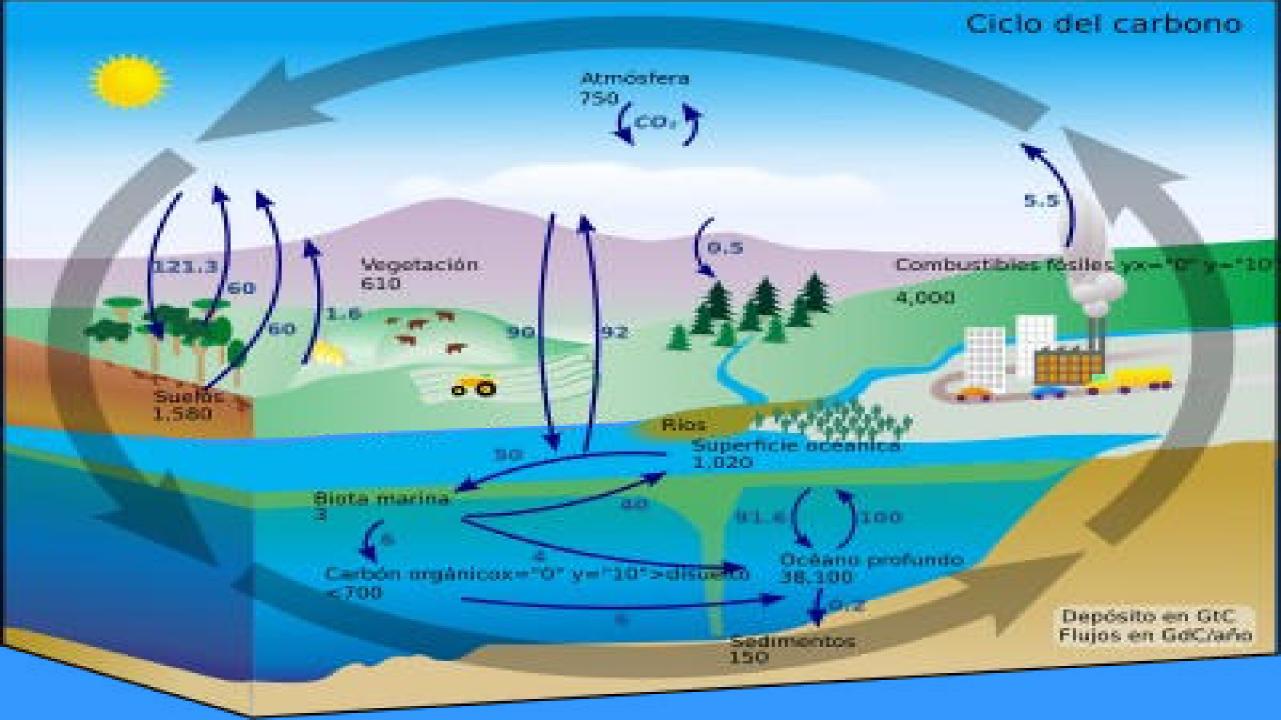
LA FOTOSÍNTESIS

Energía +
$$CO_2$$
 + H_2O $CH_2O + O_2$

CARBOHIDRATOS + OXÍGENO

FOTOSÍNTESIS (AUTÓTROFOS)

RESPIRACIÓN (HETERÓTROFOS)

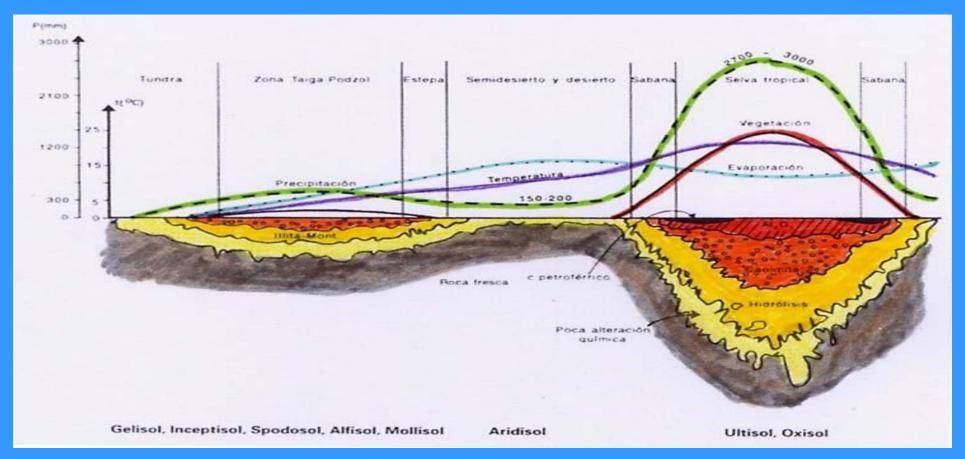


SUMIDEROS DE CARBONO

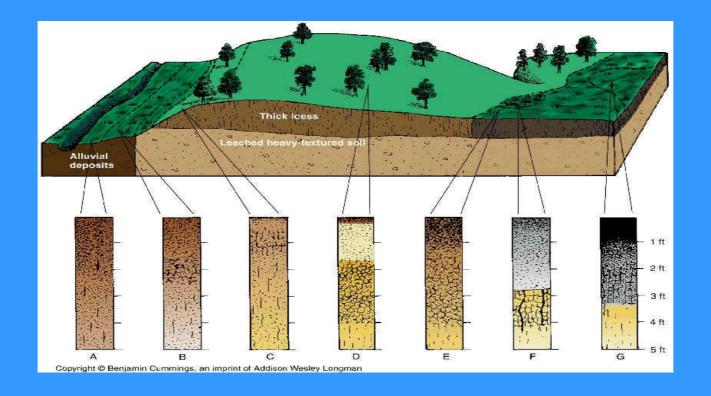
- SUMIDEROS DE CARBONO
 - -OCÉANOS 38.100 Gt (miles de millones de t)
 - -SUELOS 1.580 Gt
 - -BOSQUES 650 Gt

-ATMÓSFERA 750 Gt

EL SUELO COMO SUMIDERO


• 1kg materia orgánica fijado equivale a 0,58 kg de carbono fijado (2,13 kg de CO₂).

- Un suelo con un 2 % de materia orgánica en los primeros 30 cm de profundidad, contiene el equivalente a **166 t/ha de CO2 fijado**.
 - 16,6 kg/m² de CO₂ fijado.
- Un 0,1% de MOS equivale a 830 g/m² de CO₂


PRESENCIA Y DISTRIBUCIÓN

- LA CANTIDAD DE MATERIA ORGÁNICA ESTA DETERMINADA POR:
 - CLIMA
 - VEGETACIÓN
 - MANEJO
- NORMALMENTE DISMINUYE EN PROFUNDIDAD.

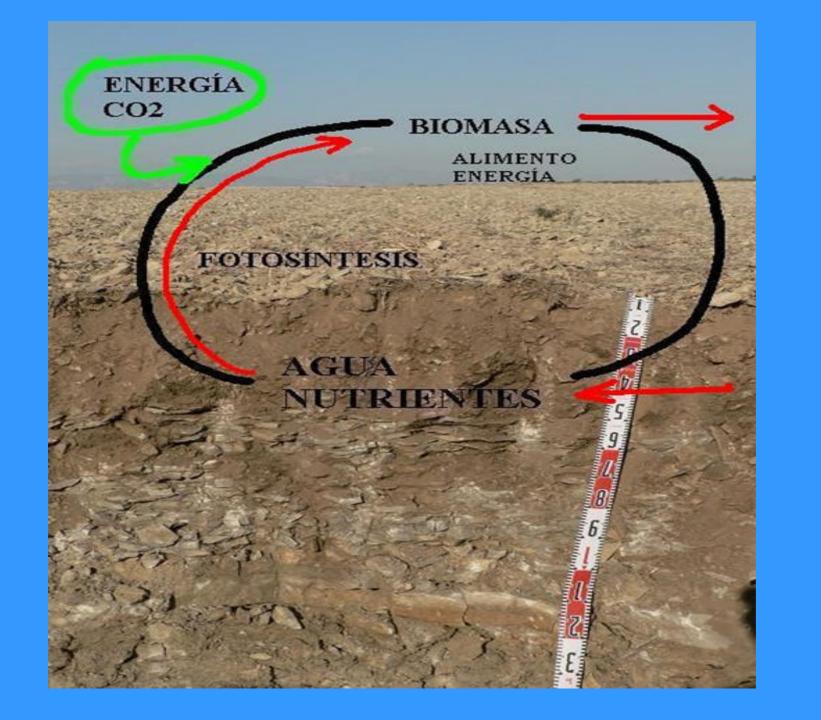
EL CLIMA tiene una acción directa sobre la humedad y temperatura del suelo y una acción indirecta a través de la vegetación factores todos ellos controladores de la velocidad e intensidad de los procesos de meteorización.

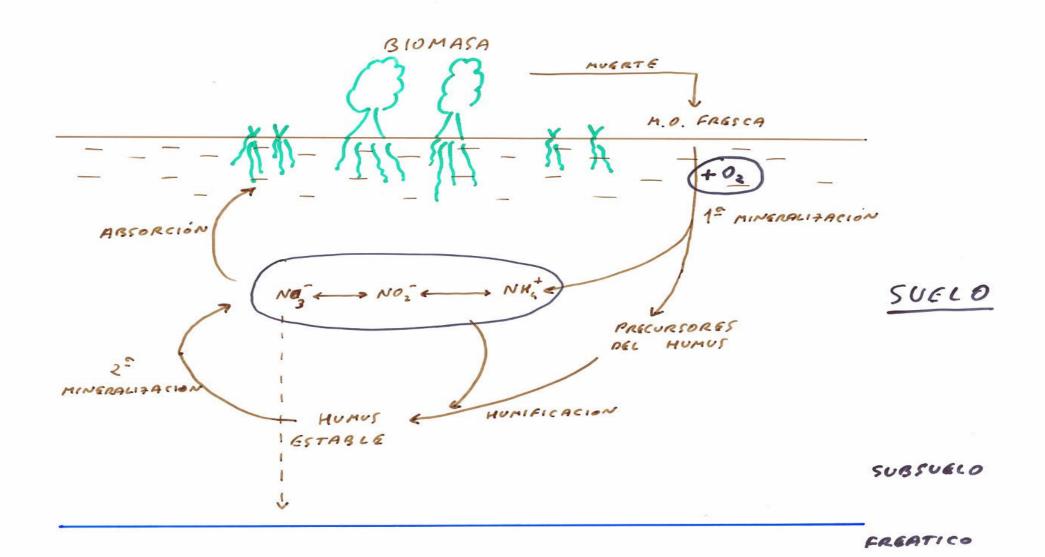
La potencia de este perfil es función del clima y la topografía

Suelo: capa superior de la superficie sólida del planeta, formada por meteorización de las rocas, en la que están o pueden estar enraizadas las plantas y que constituye un medio ecológico particular para ciertos tipos de seres vivos.

El suelo es una capa dinámica, pues en el tienen lugar complejos procesos físicos y biológicos.

DISTRIBUCIÓN.





CICLO DE LA MATERIA ORGÁNICA.

• DE FORMA NATURAL (EN LAS TIERRAS EMERGIDAS) SE PRODUCE POR COMPLETO EN EL SUELO.

• CUMPLE UNA FUNCIÓN PRIMORDIAL EN EL "RECICLADO" DE NUTRIENTES.

BALANCE

- m.o. ACTUAL = m.o. ANTERIOR +

 (ENTRADAS SALIDAS).
- ENTRADAS = FORMACIÓN DE HUMUS
 - BIOMASA MUERTA (COEFICIENTE ISOHUMICO).
- SALIDAS = MINERALIZACIÓN
 - COEFICIENTE DE MINERALIZACIÓN

CREACIÓN - MINERALIZACIÓN

- CREACIÓN COEFICIENTE ISOHÚMICO
 - APORTES * COEFICIENTE ISOHÚMICO (0,1 a 0,5)
- MINERALIZACIÓN COEFICIENTE DE MINERALIZACIÓN.
 - -m.o. mineralizada = k * contenido de m.o.
 - DEPENDE DE LA TEXTURA, CARBONATOS, HUMEDAD Y TEMPERATURA.
 - PARA LA ZONA MEDITERRANEA:
 - » SECANO 0.8 a 1.5 %
 - » REGADÍO 1.5 a 2.0 %
 - » INVERNADERO hasta 4 %

MODIFICADORES DEL CICLO DE LA MATERIA ORGÁNICA

- PRODUCCIÓN DE BIOMASA
 - MAYOR CANTIDAD DE BIOMASA
- LABOREO.
 - MÁS LABOREO
- GESTIÓN DE RESTOS
 - INCORPORACIÓN
 - ELIMINACIÓN
- CULTIVOS "DE SERVICIO"
 - CULTIVOS DESTINADOS A MEJORAR EL SUELO
- •
- ROTACIÓN DE CULTIVOS.

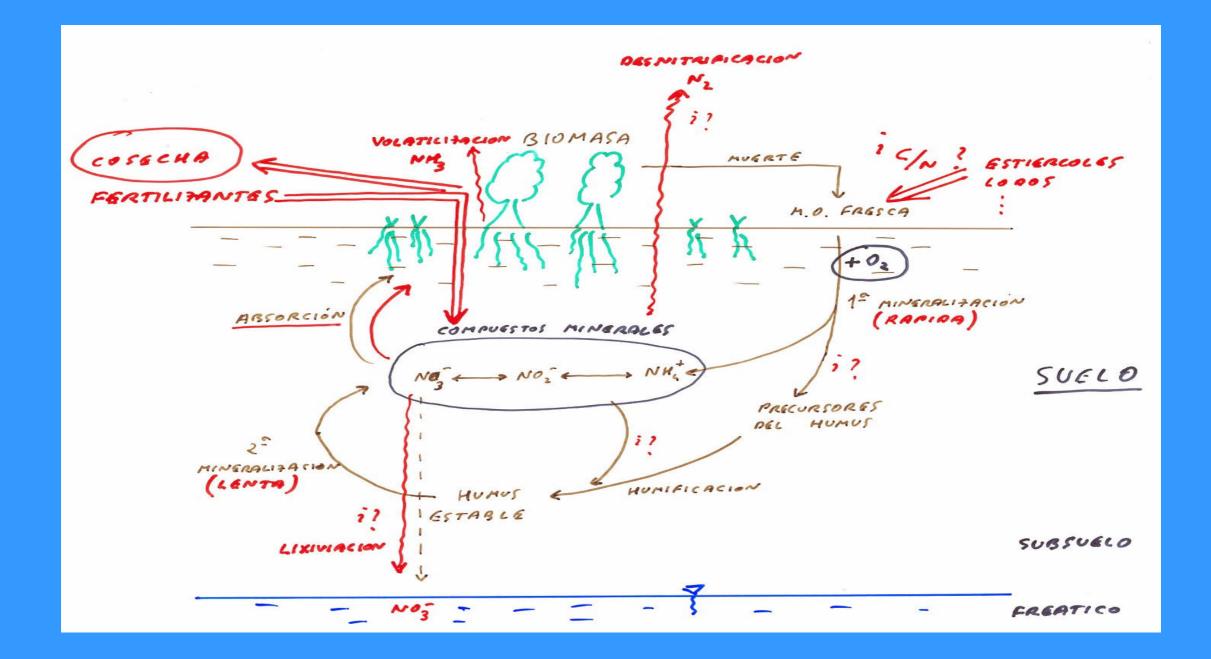
MÁS MATERIA ORGÁNICA

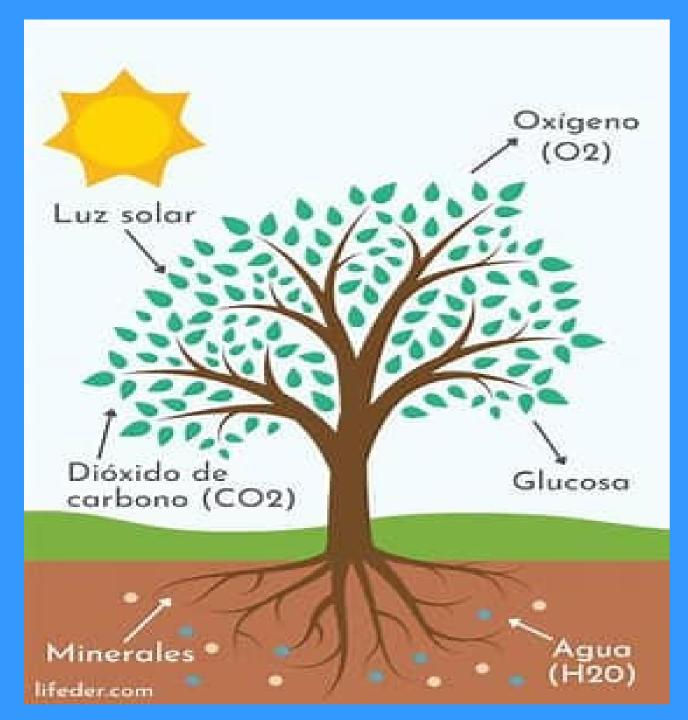
MÁS PÉRDIDAS

INCREMENTO DE M.O. NO FIJACIÓN DE CO2

"AGRICULTURA DEL CARBONO"

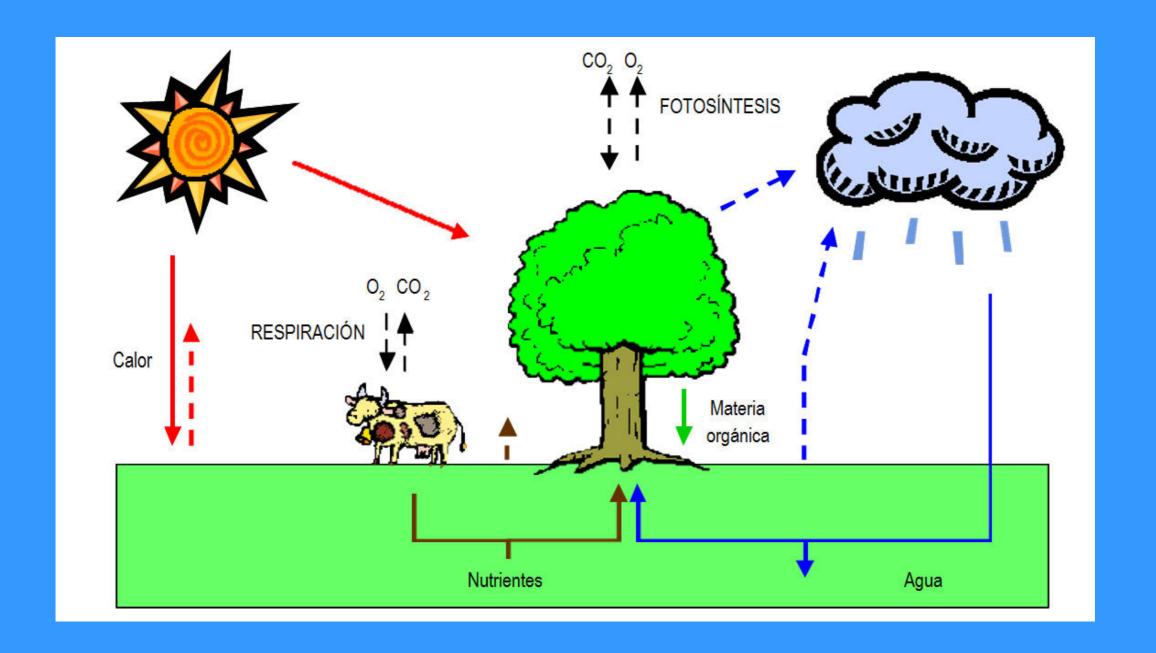
• PRODUCCIÓN DE ALIMENTOS + FIJACIÓN DE CO2


- PROPIO INTERES DEL AGRICULTOR (INCREMENTAR M.O.)
- MEDIDAS
 - PAC
 - SIEMBRA DIRECTA
 - ROTACIÓN DE CULTIVOS
 - REAL DECRETO DE NUTRICIÓN SOSTENIBLE
 - DIRECTIVA SALUD DEL SUELO
- CRÉDITOS DE CARBONO

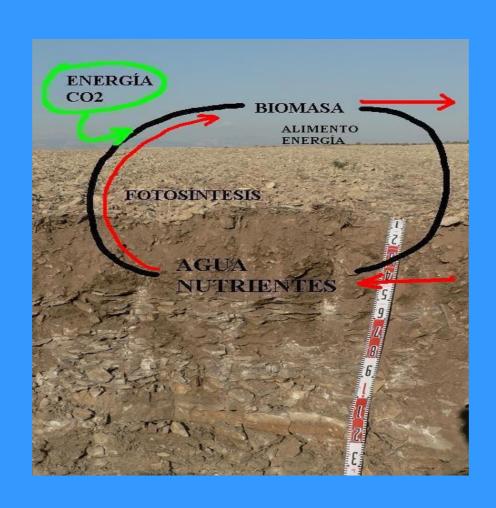


$$6 H_2O + 6 CO_2 + luz = C_6H_{12}O_6 + 6 O_2$$

PRODUCCIÓN DE GLUCOSA


RELACIÓN CON LA AGRICULTURA

- ¿Qué tiene que ver el CO₂ con la agricultura?
 - TODO
 - La agricultura participa en la emisión de los principales gases de efecto invernadero.
 - La fotosíntesis depende del CO₂.
 - El suelo agrícola es uno de los principales sumideros de carbono fijado.


RELACIÓN CON LA AGRICULTURA

• El uso de la tierra, incluida la agricultura y los bosques, representa aproximadamente el 10% de las emisiones globales de CO₂, y casi el 25% de todos los gases de efecto invernadero como el CH₄ y el N₂O.

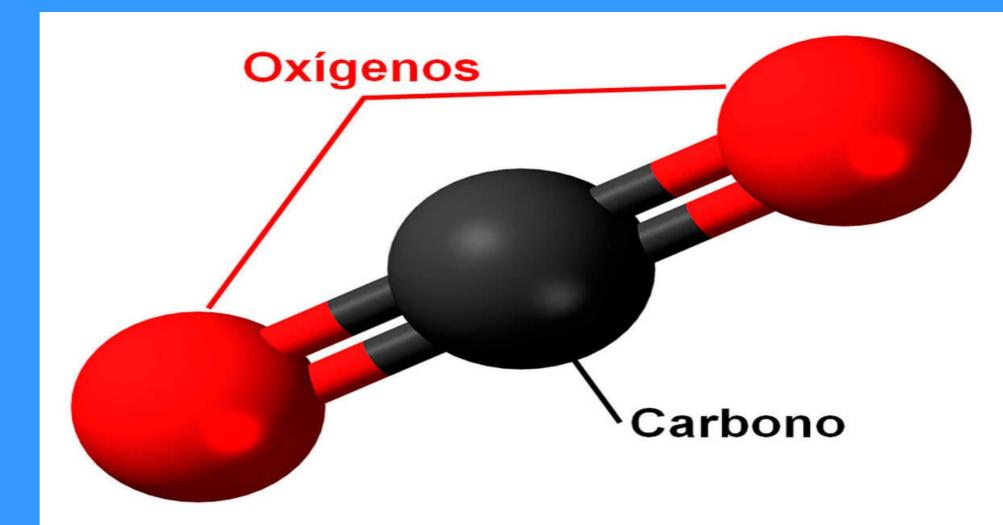
- 2015 Año internacional del suelo (FAO)
 - PRETENDE CONCIENCIARNOS DE QUE:
 - <u>EL SUELO ES ESENCIAL EN LA PRODUCCIÓN DE ALIMENTOS</u> (LA MAYOR PARTE DE NUESTRA ALIMENTACIÓN PROCEDE DE EL).
 - <u>DEBEMOS CONSERVAR EL SUELO FERTIL</u>. EL SUELO PERDIDO ES IRRECUPERABLE.

El suelo como regulador de los ecosistemas terrestres

Del CO₂ a los alimentos.

La agricultura del carbono

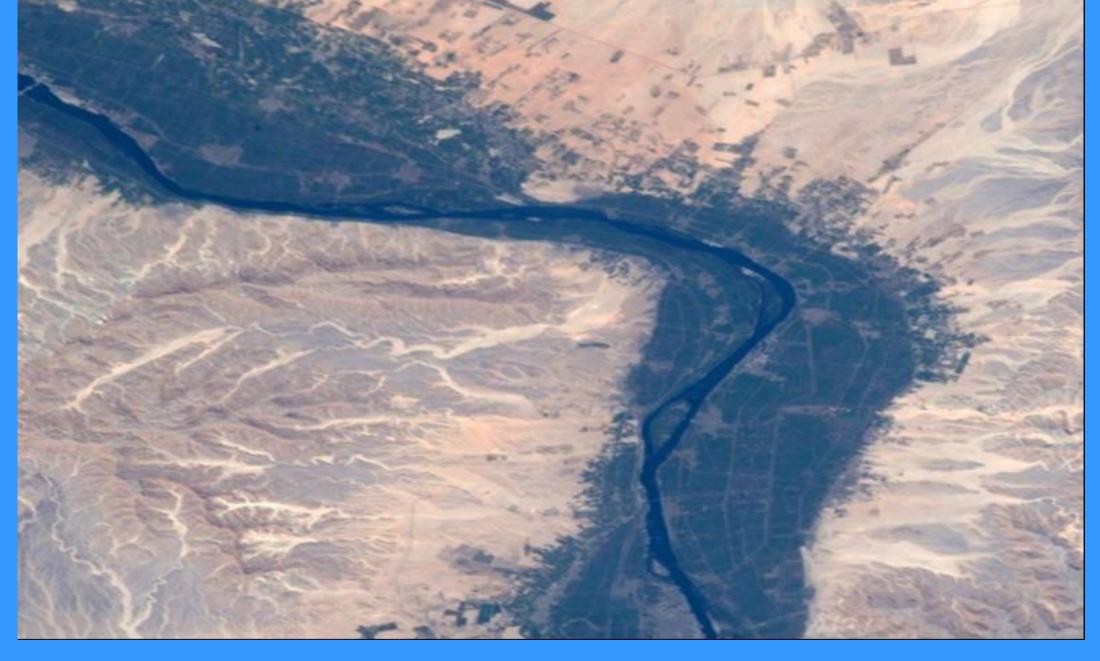
Albalatillo 10 de mayo de 2025.

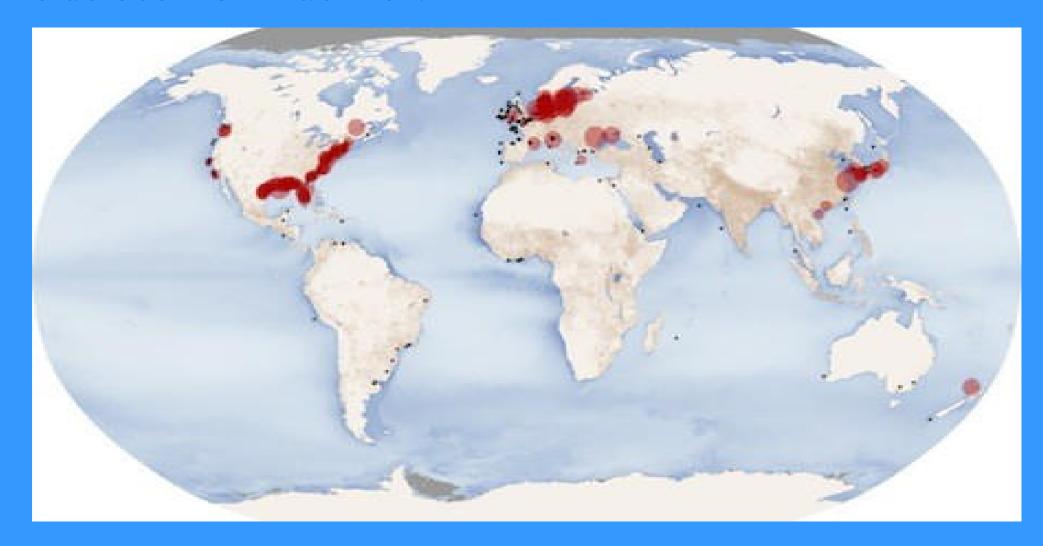

- **Jesús Betrán Aso**
 - Miembro de la AAH

EL CARBONO ES MÁS QUE CO2

- SUMIDEROS BIOLÓPGICOS PRINCIPALES
- RELACIONES ENTRE ELLOS ---- SUELO

CO₂


- El ritmo actual de crecimiento de la población mundial es de casi 7 millones de personas al mes, 84 millones al año (más de dos veces la población de España)
- Cada día hay que proveer alimentos para una "nueva ciudad" de 240.000 habitantes



Cultivo en la cuenca del Nilo (19 km de ancho).

• Zonas de océano "muertas".

Tabla Periódica de los Elementos

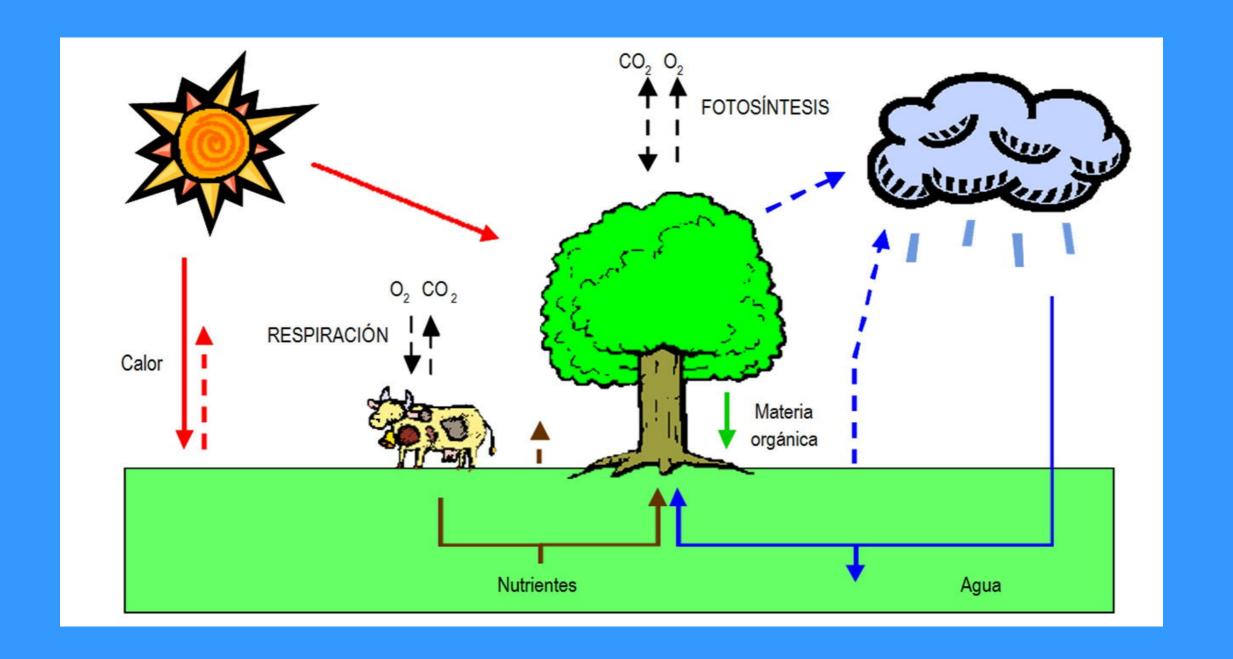
- Metales
- Metales pesados

B(C)(N)O) F Ne Al Si (P)(S) Cl Ar

He

K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe

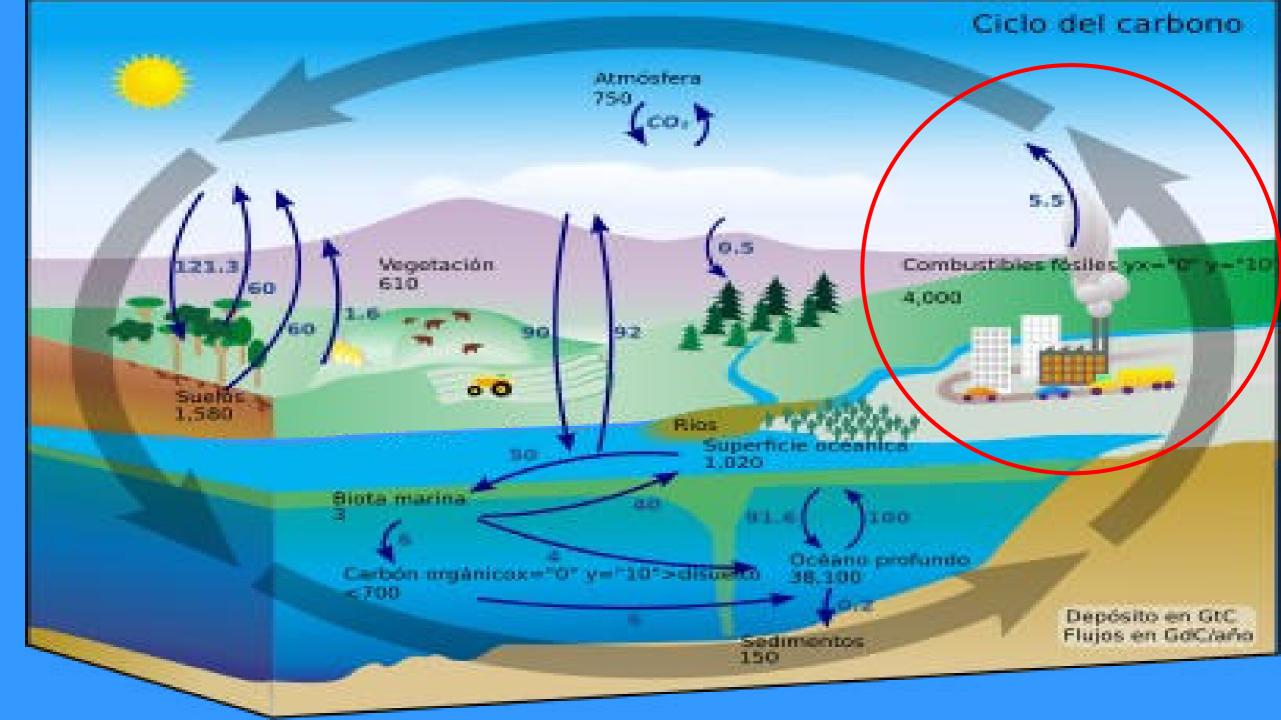
Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn

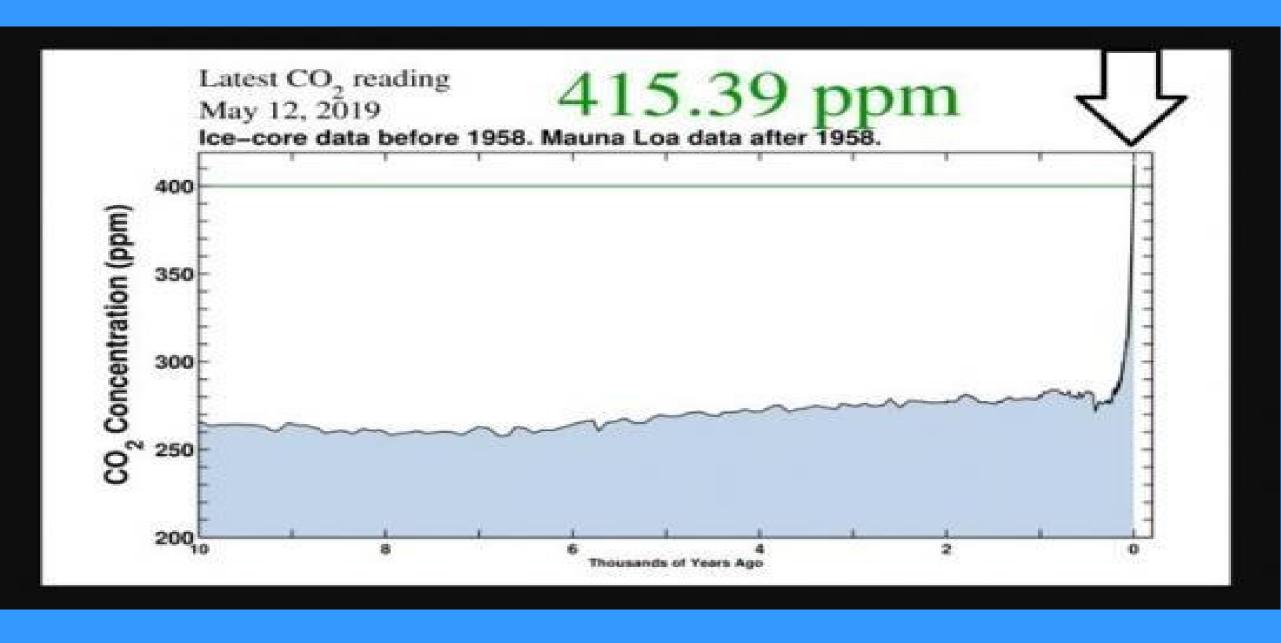

Fr Ra Ac Ku Ha

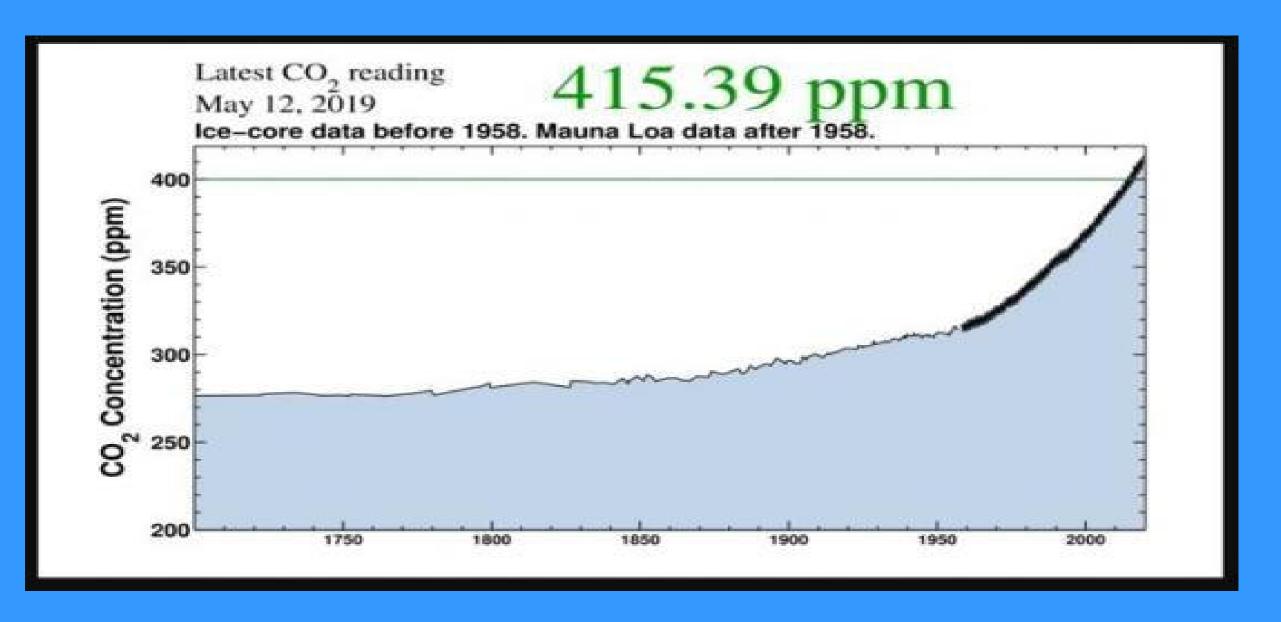
Be

Na Mg

Ce Pr Nd Pm Sm Eu Gd Tb Dy Hb Er Tm Yb Lu Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr







https://galenmckinley.github.io/ CarbonCycle_Spanish/images/ historical_carbon_budget_bar_chart_2024.m p4

CICLO DE LA MATERIA ORGÁNICA. MINERALIZACIÓN

- · COEFICIENTE DE MINERALIZACIÓN.
 - m.o. mineralizada = k * contenido de m.o.
 - DEPENDE DE LA TEXTURA, CARBONATOS, HUMEDAD Y TEMPERATURA.
 - PARA LA ZONA MEDITERRANEA:
 - » SECANO 0.8 a 1.5 %
 - » **REGADÍO** 1.5 a 2.0 %
 - » INVERNADERO hasta 4 %

EJEMPLO TRIGO SECANO

- SUELO CON UN 1.20 % DE MATERIA ORGÁNICA HASTA UNA PROFUNDIDAD DE 20 cm. (Análisis)
- SIN PIEDRAS.
- PRODUCCIÓN: 2.000 kg/ha.
- RESTOS DE PAJA RETIRADOS / INCORPORADOS.

EJEMPLO TRIGO SECANO

• BALANCE:

- Cantidad de materia orgánica presente
 - 10000 m2 * 0.20 m * 1300 kg/m3 = 2600000 kg suelo
 - 2600000 kg suelo * 1.2 % m.o. = 31200 kg m.o.
 - 18096 kg de C * 3,67 = 66.412,32 kg CO,

- SALIDAS

- Mineralización:
 - Coeficiente en secano (aprox.) 1.5 % anual

- -31200 kg m.o. * 1.5 % = 468 kg
 - » que liberan 271 kg de carbono
 - $**3,67 = 996,19 \text{ kg CO}_{2}$

- BALANCE:
 - ENTRADAS:
 - Restitución al suelo de las raíces (y rastrojo).
 - Tabla (para un rendimiento medio)
 - » Aporte de 2000 kg de restos
 - Coeficiente Isohúmico:
 - Tabla (0.15)
 - m.o. generada = 2000 * 0.15 = 300 kg
 - Que fijaran aprox. 174 kg de C
 *3,67 = 638,58 kg CO₂

• BALANCE:

- SALIDAS 468 kg
- ENTRADAS 300 kg
- PERDIDA NETA 168 kg/ha.

- 996,19 kg CO₂
- 638,58 kg CO₂
- 357,61 kg CO₂

- BALANCE:
 - ENTRADAS (si se deja la paja):
 - Restitución al suelo de las raíces (y rastrojo).
 - Tabla (para un rendimiento medio)
 - » Aporte de 2000 kg de restos raíces y tallos
 - » Aporte de 2000 kg de paja
 - Coeficiente Isohúmico:
 - Tabla (0.15)
 - m.o. generada = 4000 * 0.15 = 600 kg
 - Que fijaran aprox. 348 kg de C
 *3,67 = 1.277,16 kg CO,

• BALANCE (con la paja):

- SALIDAS 468 kg

996,19 kg CO,

- ENTRADAS 600 kg

1.277,16 kg CO,

- GANACIA NETA 132 kg/ha. 280,97 kg CO₂

AGRICULTURA DEL CARBONO

- CRÉDITOS DE CARBONO. SE "PAGA" POR LA FIJACIÓN NETA DE CARBONO.
 - Condicionado a determinadas prácticas:
 - Gestión de restos de cosecha.
 - Cultivos de servicio.
 - Siembra directa / mínimo laboreo
 - Criterio
 - Compromiso de esas prácticas
 - Análisis de la materia orgánica del suelo (a veces).

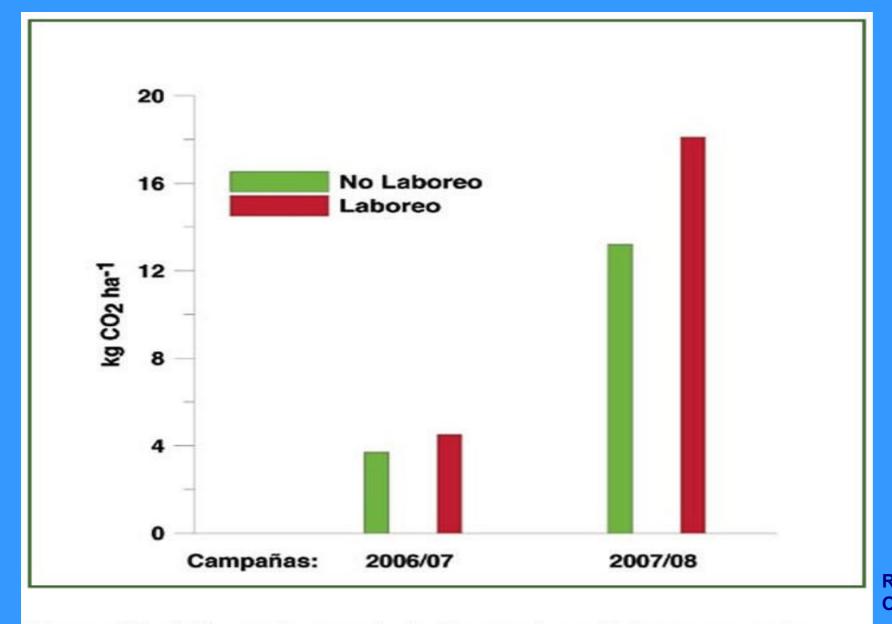


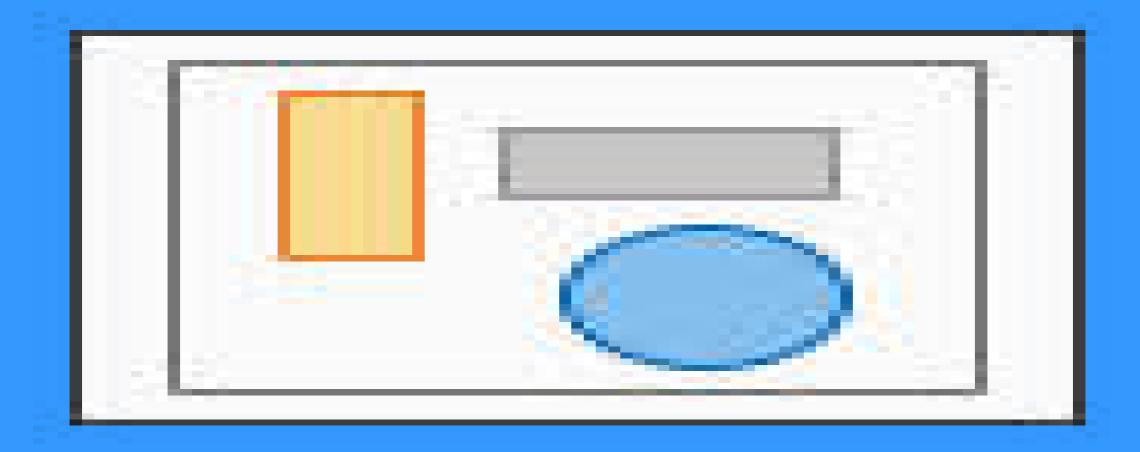
Figura 4.Emisión total acumulada durante las seis horas posteriores a la siembra en ambos sistemas de cultivo para las campañas 2006/07 y 2007/08.

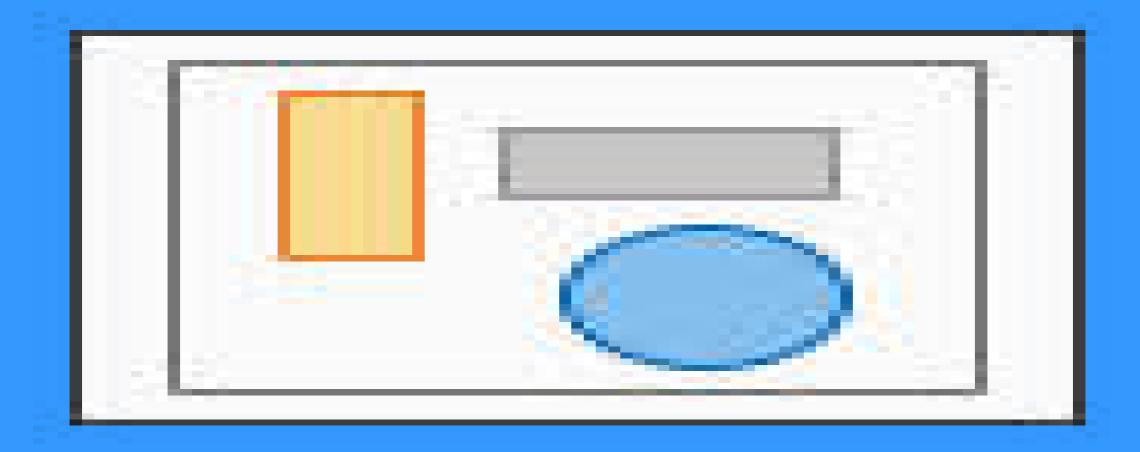
R Ordóñez1, R Carbonell1, P González1 y O Veroz2, 2008

CONCLUSIÓN

- El dióxido de carbono (CO2) tiene un impacto significativo en la agricultura y la agricultura tiene un impacto significativo en el CO2.
 - ... tanto positivo como negativo.
 - Un aumento de CO2 puede mejorar la fotosíntesis.
 - El cambio climático puede generar temperaturas extremas, sequías y eventos climáticos adversos que afectan negativamente la producción agrícola.

CONCLUSIÓN

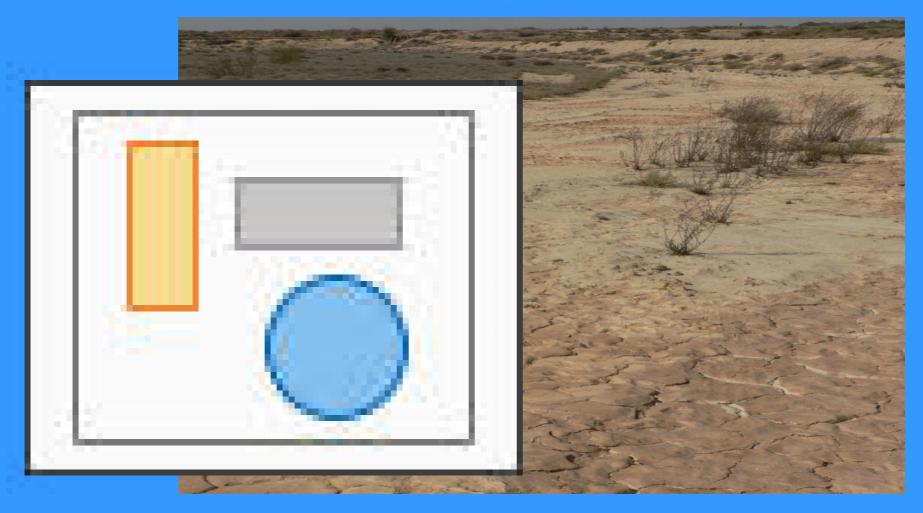

- La agricultura puede ser un gran fijador neto de carbono. Si se remuneran determinadas prácticas puede ser una fuente de ingresos.
 - Mercado voluntario 40 a 80 euros/crédito.

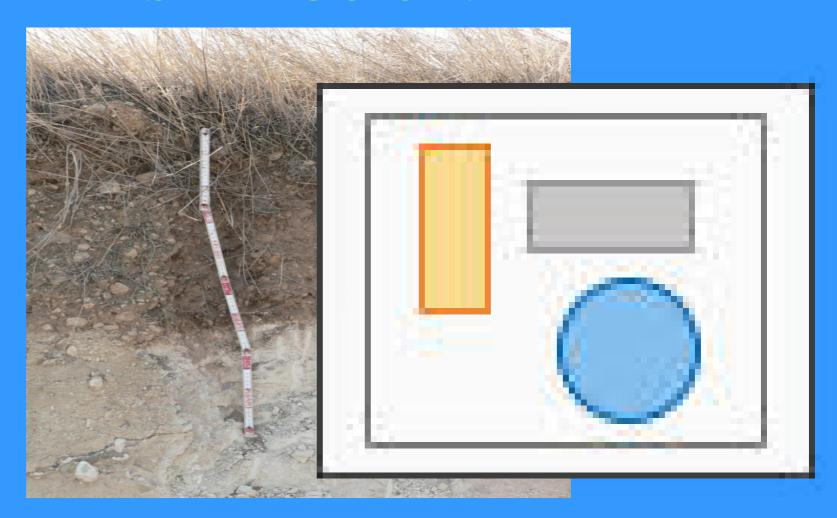

ASTRONOMÍA, METEOROLOGÍA Y AGRICULTURA

SÁBADO 10 DE MAYO DE 2025 ALBALATILLO

- EN CASO DE QUE SE PRACTIQUE BARBECHO, <u>EL AÑO DE</u> BARBECHO:
 - SALIDAS
 - Mineralización:
 - -31200 kg m.o. * 1.5 % = 468 kg
 - » que liberan 23 kg de nitrógeno (y 271 kg de carbono), y otros nutrientes.
 - ENTRADAS
 - No hay aportes
 - BALANCE
 - PERDIDA DE 468 KG DE m.o.
 - LIBERACIÓN DE 23 kg DE NITRÓGENO.

- EN CASO DE QUE SE PRACTIQUE BARBECHO, ROTACIÓN COMPLETA (2 años):
- BALANCE:
 - SALIDAS 936 kg
 - ENTRADAS 300 kg
 - PERDIDA NETA 636 kg/ha.
- BALANCE NITRÓGENO
 - APORTE 46 kg/ha.
 - FIJACIÓN15 kg/ha
 - LIBERACIÓN NETA
 31 kg/ha




PROPIEDADES

- MEZCLA DE SUSTANCIAS ORGÁNICAS.
- · COMPOSICIÓN MEDIA:
 - CARBONO (C) 58 %
 - NITRÓGENO (N) 5 %
 - Azufre, fósforo,, microelementos.
 - Relación C/N aprox. 10

MEJORA PROPIEDADES FISICAS DEL SUELO.

DISTRIBUCIÓN.

DIAGNOSTICO.

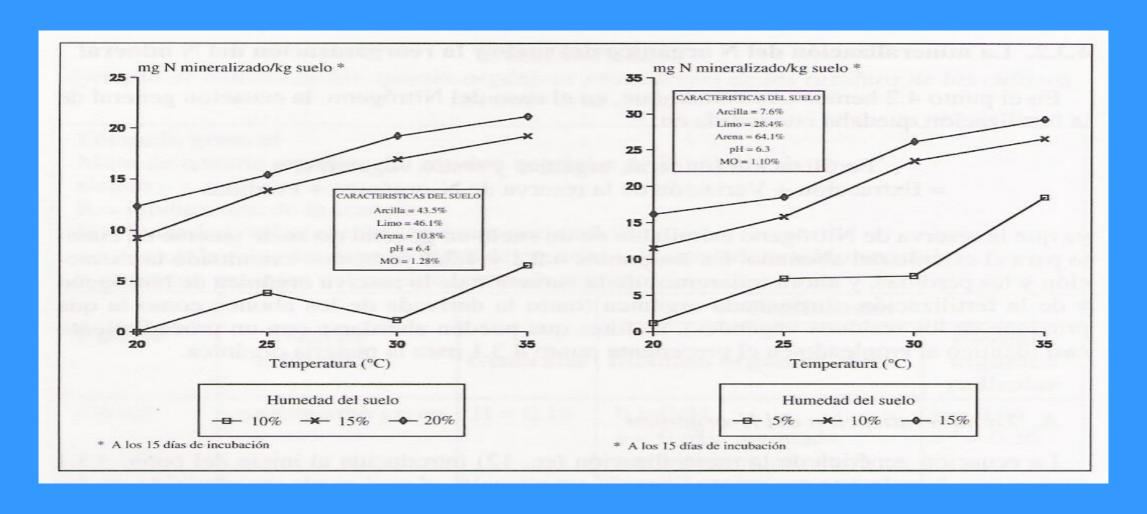
NORMAS DE DIAGNÓSTICO DE LA MATERIA ORGÁNICA DEL SUELO EN FUNCIÓN DE LA TEXTURA Y EL PH

РН	GRUPO TEXTURAL	DIAGNÓSTICO						
		Muy pobre	Pobre	Correcto	Rico	Excesivo		
< 5,8 (1)	Cualquiera	<0,2 (2)	2,0-2,5	2,5-3,0	3,0-3,5	>3,5		
5,8-8,3	Arenoso Medio Arcilloso	<0,8 <1,2 <2,0	0,8-1,2 1,2-1,8 2,0-2,5	1,2-1,5 1,8-2,3 2,5-3,0	1,5-2,0 2,3-3,0 3,0-3,5	>2,0 >3,0 >3,5		
> 8,3	Cualquiera	Pueden hallarse valores anormalmente altos de materia orgánica debido a la ralentización de la biomasa edáfica.						

⁽¹⁾ Suelos con una reducida actividad microbiana debido al bajo pH.

Fuente: Spring y cols. (1993).

⁽²⁾ Valores expresados como porcentaje.



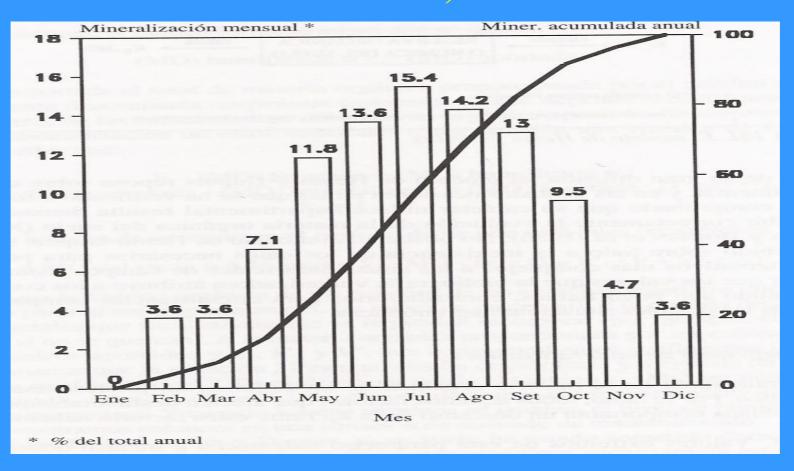
COMPOSICIÓN MEDIA Y RELACIÓN C/N DE ALGUNOS MATERIALES ORGÁNICOS COMPOSTABLES

MATERIAL	HUMEDAD	NITRÓGENO	RELACIÓN C/N
Residuos de frutas	80	1,4	40
Huesos de aceitunas	8-10	1,2-1,5	30-35
Cáscara de arroz	14	0,3	121
Residuos vegetales	_	2,5-4	11-13
Residuo matadero	10-78	13-14	3-3,5
Residuos de pescado	76	10,6	3,6
Esqueletos de pollo	65	2,4	5
Estiércol de gallina	37	2,7	14
Estiércol de vaca	81	2,4	19
Estabulada	79	2,7	18
Semiestabulada	83	2,7	13
Estiércol ovino	69	2,7	2,7
Purines	80	3,1	3,1
Basura (residuos alimentación)	69	1,9-2,9	14-16
Papel de uso doméstico	18-20	0,2-0,25	127-178
Lodos de depuradora de aguas residuales urbanas			
activos	72-84	5,6	6
Lodos digeridos	3-1	1,9	16
Maíz de ensilado	65-68	1,2-1,4	38-43
Heno (general)	8-10	2,1	15-32
Heno de leguminosa	-	2,5	16
Heno de no leguminosas	_	1,3	32
Paja general	12	0,7	80
Paja cebada	_	0,9	60
Paja trigo	_	0,4	127
Corteza maderas duras	_	0,241	223
Corteza maderas blandas	12 <u></u> 23	0,14	496
Residuos de papel de periódico	3-8	0,06-0,14	398-852
Lodos industria papelera	81	0,56	54
Pulpa de papel	82	0,59	90
Serrín	39	0,24	442
Residuos maderas blandas	_	0,09	560
Residuos maderas duras	_	0,09	641
Restos vegetales de jardinería urbana	82	3,4	17
Hojas	38	0,9	54
Poda de árboles	70	3,1	16

Fuente: Adaptado de Rynk y cols. (1992).

EFECTO HUMEDAD Y TEMPERATURA SOBRE EL RITMO DE MINERALIZACIÓN (Chiang et al. 1983).

NITROGENO MINERALIZADO EN DIFERENTES CONDICIONES.


N-inorgánico generado por mineralización del humus (estimación para un cultivo de maíz en Francia) (SOLTNER-1988)

Tipo de suelo	pН	Nivel de materia orgánica						
		mental I	of the grade in	2.5%		3.0% o más		
		1.5%	2.0%	arcilla < 25%	arcilla > 25%	arcilla < 25%	arcilla > 2 %	
Suelo no calcáreo (o poco)	< 5	30 1,2	40	55	50	60	50	
	5 - 6	45	60	75	60	90	70	
	> 6	60	80	100	80	120	90	
Suelo calcáreo con más del 20% de CaCO ₃		50						
Suelo poco	profundo	10	Stall 0 =	3	30			

¹ Suponiendo que el suelo presenta la usual relación C/N de 10, a través del nivel de materia orgánica conoceremos el contenido aproximado de N-orgánico.

² Resultados expresados en kg de N mineralizado por ha y ciclo de cultivo.

EVOLUCIÓN DE LA MINERALIZACIÓN (Kolenbrander 1981).

COEFICIENTE ISOHÚMICO

30	Autor						
Especie	A	В	C	D			
Trigo/Cebada/Avena • raíces • partes aéreas	0.15 0.15	0.08 0.08	0.15 0.08	0.14			
Maíz • raíces • partes aéreas	0.15 0.12	0.06 0.06	0.15 0.12 ⁴	0.20			
Remolacha • raíces • partes aéreas	0.15 0.08	0.04 3	0.15 0.08	Turba Samientos Restos fors			
Patata • raíces • partes aéreas	0.15		0.15 0	es ale (4 m.) nello lei mie la filore lecia			
Colza • raíces • partes aéreas	0.15 0.15	0.10 0.10	0.15 0.12				
Restos de prados		0.15					
Guisante/Judía/Haba • raíces • partes aéreas	0.15 0.08		0.15 0.08				
Lino • raíces • partes aéreas	0.15 0.20		en i <u>ul</u> emali				
Abono en verde • raíces • partes aéreas	0.15 0.05-0.08 ²	0.01 3	0.15	school land			
Alfalfa • raíces • partes aéreas	0.20 0.12	0.15 ³	0.15 0.12	Temenu V uo s Curojo			

¹ Las k₁ de este cuadro tienen el significado clásico, es decir, se refieren a la fracción de materia seca que se humifica

BIBLIOGRAFÍA:

- A: SOLTNER-1990, para suelos no calcáreos.
- B: MULLER-1982, para todo tipo de suelos.
- C: BOIFFIN et al.-1986 D: DELAS y MOLOT-1983.

² Según el abono en verde sea respectivamente poco o muy lignificado.

³ No especifica la parte del vegetal a la que se refiere, aunque presumiblemente se trata de la aérea.

^{4 0.10} para la base de los tallos no recolectados en el maíz para ensilar.

COEFICIENTE ISOHÚMICO

(Abonos orgánicos).

Coeficientes isohúmicos k₁ l de diferentes abonos orgánicos

	Autor						
Abono orgánico	A	В	C	D	E		
Estiércol bien maduro	0.50	0.3-0.5					
Estiércol semi-maduro	0.40		0.30	0.32			
Estiércol fresco con paja abundante	0.25	0.2-0.4					
Cómpost de basuras	0.25			0 2 - 1 2	9 <u>13</u>		
Cómpost de champiñones			0.30	N <u></u>	-		
Fango de depuradora urbana	0.20		0.20		0.15-0.25		
Turba	1.00	-					
Sarmientos/orujo				0.37			
Restos forestales			s 	0.31			

Las k₁ de este cuadro tienen el significado clásico, es decir, se refieren a la fracción de materia seca que se humifica.

BIBLIOGRAFÍA:

A: SOLTNER-1990

B: MULLER-1982

C: Boiffin et al.-1986

D: DELAS y MOLOT-1983

E: CHALIN-1990.

COEFICIENTE ISOHÚMICO (Abonos orgánicos).

Coeficientes isohúmicos k_1 de diferentes abonos orgánicos estimados mediante métodos químicos

A - Estiércoles ² (S	ERRA-1988)	B - Cómpost de basuras de Cataluña		
Tipo de estiercol	$\mathbf{k_1}$	Planta de compostaje	$\mathbf{k_1}$	
Gallinaza	0.29	Vilafranca del Penedés	0.26	
Oveja	0.35	Gavá	0.32	
Ternero	0.32	Mataró	0.28	
Vaca	0.35			
Conejo	0.30			

C - Fangos de depuradora de aguas residuales de Cataluña (ROMERO DEL CASTI-LLO *et al.*-1989)

E.D.A.R.	$\mathbf{k_1}$	E.D.A.R.	$\mathbf{k_1}$	E.D.A.R.	$\mathbf{k_1}$
Begur	0.26	Girona	0.55	Port de la Selva	0.45
Blanes	0.28	Igualada	0.41	Reus	0.47
Cadaqués	0.25	Llançá	0.45	Roses	0.33
Castelldefels	0.47	Manresa	0.46	Sant Feliu de Guíxols	0.26
Colera	0.32	Olot	0.35	Tossa	0.38
L'Estartit	0.35	Port-Bou	0.34	Vilafranca	0.41
Figueres	0.35	Palamós-Palafrugell	0.32		

Las k₁ de este cuadro expresan la fracción de materia orgánica del abono que se humifica.

² Muestras recolectadas en Cataluña.

³ Media de las muestras analizadas durante el año 1990 por la Escuela Superior de Agricultura de Barcelona.

COEFICIENTE ISOHÚMICO (Abonos orgánicos según madurez).

Coeficientes isohúmicos k_1^{-1} de abonos orgánicos con diferente madurez, estimados mediante métodos químicos

Cómpost (Saña et al1989)		Estiércoles (SERRA-19)			
	Frescos	Maduros	name outling	Frescos	Maduros
\mathbf{k}_{1}	0.25^{2}	0.40^{3}	k ₁	0.274	0.435
S	0.05	0.06	S	0.03	0.06

Las k₁ de este cuadro expresan la fracción de materia orgánica del abono que se humifica.

² Media de 29 muestras de cómposts de origen diverso.

³ Media de 36 muestras de cómposts de origen diverso.

⁴ Media de 16 muestras de estiércoles de origen diverso.

⁵ Media de 32 muestras de estiércoles de origen diverso.

APORTES ORGÁNICOS.

Ejemplo de cálculo de los aportes orgánicos procedentes de los residuos de los cultivos (BOIFFIN et al.-1986)

Fórmula general

Masa de materia orgánica del residuo vegetal = $a \cdot R \cdot (1-H) \cdot b$ siendo:

R = rendimiento de la cosecha.

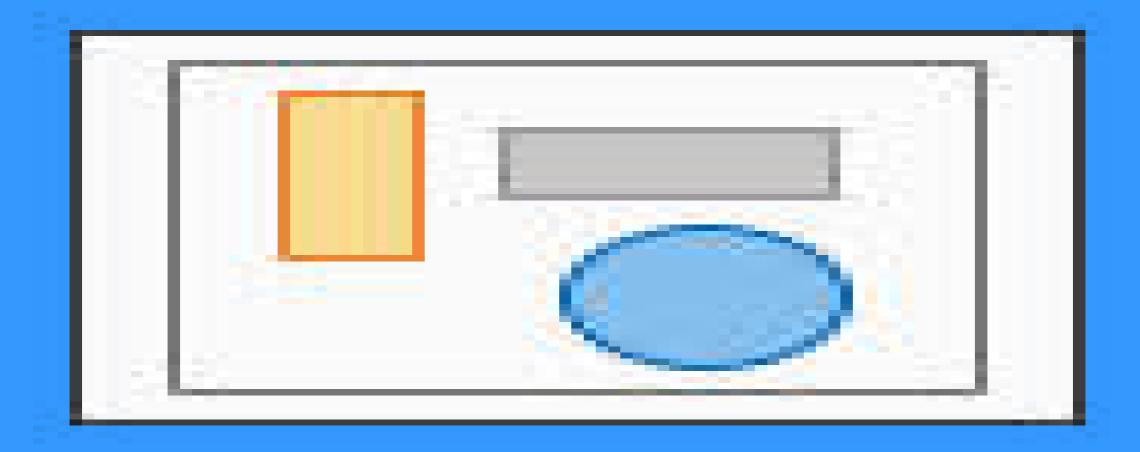
H = humedad de la cosecha (en tanto por uno)

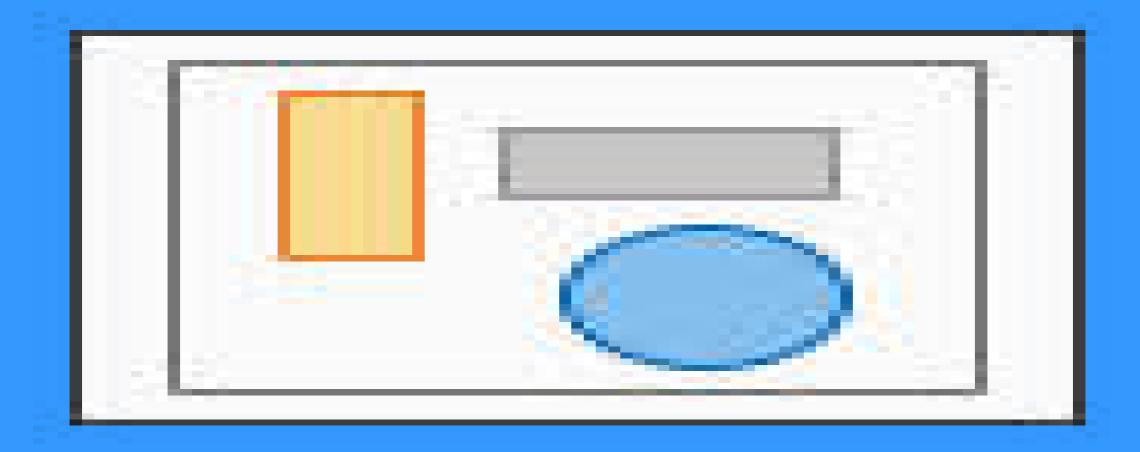
a = factor de relación entre la masa de cosecha y la masa de residuo vegetal

b = materia orgánica del residuo (en tanto por uno)

			Coeficientes		
Cultivo	Dato de referencia	Generales	Biomasa orgánica aérea	Biomasa orgánica radicular	
Cereal	rendimiento grano	H = 0.16	b = 0.94 a = 0 paja quemada a = 1 paja enterrada a = 0.3 rastrojo enterrado	b = 0.84 $a^{-1} = 0.36$	
Maíz grano (híbrido)	rendimiento grano	H=0.16	b = 0.92 a = 0 caña quemada a = 0.9 caña enterrada	b = 0.84 a = 0.30	
Maíz para ensilado	producción de masa verde	H=0.65	b = 0.92 $a^2 = 0.06$	b = 0.84 a = 0.17	

Este coeficiente sólo tienen en cuenta la masa radicular que quedará en la capa de suelo superficial.


² Corresponde a la base de los tallos.


APORTES ORGÁNICOS.

Estimación aproximada de los residuos de las cosechas (SOLTNER-1990)

Cultivo		(raíc	es)	Restituciones facultativas (partes aéreas)			
Cultivo			del cultivo	Rendimiento del cultivo			
	medio	bueno	muy bueno	medio	bueno	muy bueno	
Remolacha azucarera	0.8 1	1.0	1.2	4.0	5.0	6.0	
Patata	0.8	1.0	1.2				
Maíz (grano)	2.0	3.0	4.0	4.0	6.0	7.0	
Colza (grano)	2.0	2.5	3.0	5.0	6.0	7.0	
Alfalfa (por año)	2.0	3.0	4.0	1.0	2.0	3.0	
Guisante (para conserva)	1.5	2.0	2.5	2.5	3.5	4.0	
Lino (grano	1.2	1.6	2.0	1.5	2.0	2.5	
Lino (para fibra)	0.6	0.8	1.0				
Trigo	2.0	2.5	3.0	4.0	5.0	6.0	
Cebada	1.0	1.5	2.0	2.5	3.5	4.0	
Avena	2.0	2.5	3.0	3.0	4.0	4.5	
Abono en verde poco lignificado	0.8	1.0	1.2	3.0	4.0	5.0	
Abono en verde lignificado	1.0	1.5	1.8	4.0	5.0	6.0	

Resultados expresados en toneladas de materia seca por ha.

- SUELO CON UN 2,00 % DE MATERIA ORGÁNICA HASTA UNA PROFUNDIDAD DE 30 cm. (Análisis)
- SIN PIEDRAS.
- PRODUCCIÓN: 5.000 kg/ha.
- LOS RESTOS DE PAJA SON PICADOS Y ENTERRADOS.

• BALANCE:

- Cantidad de materia orgánica presente
 - 10000 m 2 * 0.30 m * 1300 kg/m 3 = 3900000 kg suelo
 - 3900000 kg suelo * 2.0 % m.o. = **78000 kg m.o.**

- SALIDAS

- Mineralización:
 - Coeficiente en regadío (invierno) (aprox.) 1.5 % anual
 - -78000 kg m.o. * 1.5 % = 1170 kg
 - » que liberan 59 kg de nitrógeno (y 679 kg de carbono).

- BALANCE:
 - ENTRADAS:
 - Restitución al suelo de las raíces y paja.
 - Tabla (para un rendimiento bueno)
 - » Aporte de 2500 kg de raíces
 - » Y de 5000 kg de paja
 - » Que contienen aprox 0.4 % de Nitrógeno (30 kg)
 - Coeficiente Isohúmico:
 - Tabla (0.15)
 - m.o. generada = 7500 * 0.15 = 1125 kg
 - Que fijaran aprox. 56 kg de nitrógeno.

- BALANCE:
 - SALIDAS 1170 kg
 - ENTRADAS 1125 kg
 - PERDIDA NETA 45 kg/ha.
- BALANCE NITRÓGENO
 - APORTE 30 kg/ha.
 - FIJACIÓN 56 kg/ha
 - FIJACIÓN NETA 26 kg/ha

- EN CASO DE QUE SE PRACTIQUE ADICIÓN DE PURIN DE CERDOS DE CEBO:
 - DOSIS 20 m3/ha
 - INCORPORADO CON LA PAJA.

 LA GENERACIÓN DE HUMUS ADICIONAL ES PRACTICAMENTE DESPRECIABLE, PERO MEJORA SUSTANCIALMENTE LA RELACIÓN C/N.

ESTIERCOLES SOLIDOS ("FIEMOS")																
Especie	Tipo edific.	MS	МО	Rel.	Elementos principales (kg/t)						Oligoelementos (g/t)					
/ tipo animal		%	%	C/N	рН	Ntot.	NH ₄	P ₂ O ₅	K ₂ O	CaO	MgO	Na ₂ O	Cu	Mn	Zn	Fe
Bovinos. Vacas	Estab. libre	25	18	14,0	7,8	5,5	0,5	3,5	8,0	5,0	1,9	0,5	8	150	-	-
	Estab. fija	21	_	_	-	4,7	-	3,1	4,4	_	-	-	-	120	-	-
Vacuno carne		24	15	· ·	7,3	3,9	-	3,7	4,0	2,5	1,5	0,7	-	-	16	2074
Terneros		19	13	-	7,8	2,4	-	1,0	2,7	1,8	0,5	0,7	- 12	127	-	_
Ovinos		30	23	23,0	8,1	6,7	-	4,2	11,2	11,2	1,4	1,8		12 8	-10	-
Cerdos		21	16	-	-	6,0	-	6,0	4,0	6,0	2,5	1,0	-	5 <u>11</u> 8	_	=
Caprinos		48		-		6,1		5,2	5,7	22	-	329		8 <u>4</u> 81	2	_
Caballos		54	41	68 <u>—</u> 8	_	8,2	2,1	3,2	9,0	_	2,0	19 <u>44</u> 1	120	122	-	-
Aves	Pollos	58	48	11,0	6,8	25,5	-	21,5	21,0	14,5	3,7	3E	81	-	147	_
	Pavos	54	43	10,5	6,9	24,0	-	25,0	20,5	21,5	4,2	s=:	78	-	166	-
			ES	TIERO	OLE	S FLUI	DOS	O LÍQI	UIDOS	3						
A STATE OF THE PARTY OF THE PAR					Elementos principales (kg/t)						Oligoelementos (g/t)					
Especie	Tipo edific.	MS	МО	Rel.		Ele	ment	os prir	ncipal	es (kg	/t)		Olig	oelen	entos	(g/t)
Especie / tipo animal	Tipo edific.	MS %	MO %	Rel. C/N	pН	Ele Ntot.	ment NH₄	OS prin	ncipal K₂O	es (kg CaO	/t) MgO	Na ₂ O	Olig	oelem Mn	entos Zn	(g/t) Fe
	Tipo edific. Todo est. fluido				pH 7,1	1						N a₂O				
/ tipo animal		%	%	C/N		Ntot.	NH ₄	P ₂ O ₅	K ₂ O	CaO	MgO		Cu	Mn	Zn	Fe
/ tipo animal	Todo est. fluido	% 12,0	% 5,5	C/N 8,0	7,1	Ntot . 5,0	NH₄ 2,5	P ₂ O ₅	K₂O 6,0	CaO 2,4	MgO 0,7	1,1	Cu 2	Mn 16	Z n	Fe 68
/ tipo animal Bovinos Vacas	Todo est. fluido	% 12,0 18,5	% 5,5 12,8	C/N 8,0	7,1 6,8	Ntot . 5,0 6,0	NH ₄ 2,5 1,5	P ₂ O ₅ 2,5 2,8	6,0 4,2	2,4 2,4	0,7 1,0	1,1 0,9	Cu 2 3	Mn 16 28	Zn 11 13	Fe 68 788
/ tipo animal Bovinos Vacas Vacuno carne	Todo est. fluido	% 12,0 18,5 15,0	% 5,5 12,8 10,7	C/N 8,0 -	7,1 6,8 7,2	5,0 6,0 5,2	NH ₄ 2,5 1,5 3,1	P ₂ O ₅ 2,5 2,8 3,1	6,0 4,2 5,0	2,4 2,4 4,5	0,7 1,0 1,5	1,1 0,9 1,6	2 3 12	Mn 16 28 38	2n 11 13 56	Fe 68 788 309
/ tipo animal Bovinos Vacas Vacuno carne Terneros	Todo est. fluido Area escurr.	% 12,0 18,5 15,0 1,9	% 5,5 12,8 10,7 1,0	C/N 8,0	7,1 6,8 7,2 7,4	5,0 6,0 5,2 2,7	NH ₄ 2,5 1,5 3,1 2,1	P ₂ O ₅ 2,5 2,8 3,1 2,1	K₂O 6,0 4,2 5,0 3,8	2,4 2,4 4,5 0,3	0,7 1,0 1,5 0,3	1,1 0,9 1,6 1,5	2 3 12 1	16 28 38 8	11 13 56 14	68 788 309 19
/ tipo animal Bovinos Vacas Vacuno carne Terneros	Todo est. fluido Area escurr.	% 12,0 18,5 15,0 1,9 8,0	% 5,5 12,8 10,7 1,0 7,0	8,0 - - - 8,0	7,1 6,8 7,2 7,4 7,6	5,0 6,0 5,2 2,7 5,5	NH ₄ 2,5 1,5 3,1 2,1 3,5	P ₂ O ₅ 2,5 2,8 3,1 2,1 6,0	6,0 4,2 5,0 3,8 3,0	2,4 2,4 4,5 0,3 3,5	0,7 1,0 1,5 0,3	1,1 0,9 1,6 1,5	2 3 12 1 25	Mn 16 28 38 8	11 13 56 14 60	68 788 309 19 262
/ tipo animal Bovinos Vacas Vacuno carne Terneros Cerdos Cebo	Todo est. fluido Area escurr.	% 12,0 18,5 15,0 1,9 8,0 6,0	% 5,5 12,8 10,7 1,0 7,0 4,0	C/N 8,0 8,0 -	7,1 6,8 7,2 7,4 7,6 6,8	5,0 6,0 5,2 2,7 5,5 4,5	NH ₄ 2,5 1,5 3,1 2,1 3,5 2,6	P ₂ O ₅ 2,5 2,8 3,1 2,1 6,0 4,0	6,0 4,2 5,0 3,8 3,0 2,3	2,4 2,4 4,5 0,3 3,5 5,9	0,7 1,0 1,5 0,3 0,8 2,8	1,1 0,9 1,6 1,5 1,5 0,5	2 3 12 1 25 6	Mn 16 28 38 8 58 27	2n 11 13 56 14 60 64	Fe 68 788 309 19 262 78
/ tipo animal Bovinos Vacas Vacuno carne Terneros Cerdos Cebo Cerdas Gest.	Todo est. fluido Area escurr.	% 12,0 18,5 15,0 1,9 8,0 6,0 10,0	% 5,5 12,8 10,7 1,0 7,0 4,0 6,9	C/N 8,0 8,0 -	7,1 6,8 7,2 7,4 7,6 6,8 7,4	5,0 6,0 5,2 2,7 5,5 4,5 5,5	NH ₄ 2,5 1,5 3,1 2,1 3,5 2,6 3,6	P ₂ O ₅ 2,5 2,8 3,1 2,1 6,0 4,0 6,5	6,0 4,2 5,0 3,8 3,0 2,3 2,4	2,4 2,4 4,5 0,3 3,5 5,9 6,7	0,7 1,0 1,5 0,3 0,8 2,8 1,5	1,1 0,9 1,6 1,5 1,5 0,5 3,5	2 3 12 1 25 6 18	Mn 16 28 38 8 58 27 45	2n 11 13 56 14 60 64 92	Fe 68 788 309 19 262 78 228
/ tipo animal Bovinos Vacas Vacuno carne Terneros Cerdos Cebo Cerdas Gest. Lechones	Todo est. fluido Area escurr. Alim. harina Alim. suero	% 12,0 18,5 15,0 1,9 8,0 6,0 10,0 8,8	% 5,5 12,8 10,7 1,0 7,0 4,0 6,9 6,6	C/N 8,0 8,0 -	7,1 6,8 7,2 7,4 7,6 6,8 7,4 7,2	5,0 6,0 5,2 2,7 5,5 4,5 5,5 6,3	NH ₄ 2,5 1,5 3,1 2,1 3,5 2,6 3,6 3,5	2,5 2,8 3,1 2,1 6,0 4,0 6,5 5,6	6,0 4,2 5,0 3,8 3,0 2,3 2,4 2,0	2,4 2,4 4,5 0,3 3,5 5,9 6,7 4,8	0,7 1,0 1,5 0,3 0,8 2,8 1,5 1,8	1,1 0,9 1,6 1,5 1,5 0,5 3,5 0,5	2 3 12 1 25 6 18 65	Mn 16 28 38 8 58 27 45 58	2n 11 13 56 14 60 64 92 144	Fe 68 788 309 19 262 78 228 276
/ tipo animal Bovinos Vacas Vacuno carne Terneros Cerdos Cebo Cerdas Gest. Lechones	Todo est. fluido Area escurr. Alim. harina Alim. suero Gall. poned.	% 12,0 18,5 15,0 1,9 8,0 6,0 10,0 8,8 25,8	% 5,5 12,8 10,7 1,0 7,0 4,0 6,9 6,6 18,2	C/N 8,0 8,0 -	7,1 6,8 7,2 7,4 7,6 6,8 7,4 7,2	5,0 6,0 5,2 2,7 5,5 4,5 5,5 6,3	NH ₄ 2,5 1,5 3,1 2,1 3,5 2,6 3,6 3,5 7,4	2,5 2,8 3,1 2,1 6,0 4,0 6,5 5,6	6,0 4,2 5,0 3,8 3,0 2,3 2,4 2,0	2,4 2,4 4,5 0,3 3,5 5,9 6,7 4,8	MgO 0,7 1,0 1,5 0,3 0,8 2,8 1,5 1,8 3,0	1,1 0,9 1,6 1,5 1,5 0,5 3,5 0,5	2 3 12 1 25 6 18 65	Mn 16 28 38 8 58 27 45 58	2n 11 13 56 14 60 64 92 144	Fe 68 788 309 19 262 78 228 276 400
/ tipo animal Bovinos Vacas Vacuno carne Terneros Cerdos Cebo Cerdas Gest. Lechones	Todo est. fluido Area escurr. Alim. harina Alim. suero Gall. poned. Pollos carne	% 12,0 18,5 15,0 1,9 8,0 6,0 10,0 8,8 25,8 33,0	% 5,5 12,8 10,7 1,0 7,0 4,0 6,9 6,6 18,2 23,9	C/N 8,0 8,0 -	7,1 6,8 7,2 7,4 7,6 6,8 7,4 7,2	5,0 6,0 5,2 2,7 5,5 4,5 5,5 6,3 10,5 16,0	NH ₄ 2,5 1,5 3,1 2,1 3,5 2,6 3,6 3,5 7,4	2,5 2,8 3,1 2,1 6,0 4,0 6,5 5,6	6,0 4,2 5,0 3,8 3,0 2,3 2,4 2,0 7,2 8,7	2,4 2,4 4,5 0,3 3,5 5,9 6,7 4,8 40,5 8,8	0,7 1,0 1,5 0,3 0,8 2,8 1,5 1,8 3,0 1,2	1,1 0,9 1,6 1,5 1,5 0,5 3,5 0,5 1,4 2,0	2 3 12 1 25 6 18 65 26 22	Mn 16 28 38 8 58 27 45 58	2n 11 13 56 14 60 64 92 144 94 107	Fe 68 788 309 19 262 78 228 276 400 69

- BALANCE CON PURIN:
 - ENTRADAS:
 - m.o. adicional:
 - -20000 kg purín * 7.0 % m.o. = 1400 kg m.o.
 - El coeficiente isohúmico es despreciable (salvo que contenga restos vegetales).
 - Nitrógeno aportado:
 - -20000 kg purín * 5.5 kg N / tm purín = 110 kg N
 - BALANCE NITRÓGENO
 - \Rightarrow APORTE 30 + 110 kg/ha.
 - » FIJACIÓN
 56 kg/ha
 - » <u>Liberación NETA</u> <u>84 kg/ha</u>

- BALANCE CON PURIN:
 - Mejora importante de la relación C/N:
 - Total m.o. adicionada:

```
Restos de trigo 7500 kg m.o. (C/N = 127)
Purín 1400 kg m.o. (C/N = 8)
Mezcla resultante

8900 kg m.o. (factor 1.72)
140 kg N
C/N = 37
```

- Considerando la mezcla como un estiercol fresco:
 - Coeficiente isohúmico 0.20
 - ENTRADAS:

$$\Rightarrow$$
 8900 kg m.o. $*$ 0.20 = **1780 kg**

- SALIDAS
 - » 1170 kg mineralizados.
- BALANCE POSITIVO
 - » 1780 1170 = <u>610 kg de humus generado</u>

- SUELO CON UN 2,30 % DE MATERIA ORGÁNICA HASTA UNA PROFUNDIDAD DE 30 cm. (Análisis). CON UN 20 % DE PIEDRAS.
- ROTACIÓN ALFALFA (4 años) MAIZ (2 años).
- PRODUCCIÓN:
 - Alfalfa: 15.000 kg/ha ms.
 - Maiz: 12.000 kg/ha.
- LOS RESTOS DE PAJA SON PICADOS Y ENTERRADOS.
- SE APORTAN 2000 kg/ha DE ESTIERCOL DE OVINO EN EL 2º AÑO DE MAIZ.

• BALANCE:

- Cantidad de materia orgánica presente
 - 10000 m2 * 0.30 m ((10000 * 0.3) * 0.20) * 1300 kg/m3 = 3120000 kg suelo
 - 3120000 kg suelo * 2.3 % m.o. = 71760 kg m.o.

- SALIDAS

- Mineralización:
 - Coeficiente en regadío (verano) (aprox.) 2.0 % anual
 - -71760 kg m.o. * 2.0 % = 1435 kg
 - » que liberan 72 kg de nitrógeno (y 832 kg de carbono).
 - Puede considerarse que las salidas son aproximadamente las mismas cada año de rotación.

- BALANCE:
 - ENTRADAS (alfalfa, 3 primeros años):
 - Restitución al suelo por raíces.
 - Tabla (para un rendimiento muy bueno)
 - » Aporte de 4000 kg de raíces
 - » Que contienen aprox 2.1 % de Nitrógeno (84 kg)
 - Coeficiente Isohúmico:
 - Tabla (0.20 para raíz)
 - m.o. generada = (4000 * 0.20) = 800 kg
 - Que fijaran aprox. 40 kg de nitrógeno.

- BALANCE:
 - ENTRADAS (alfalfa último año):
 - Restitución al suelo por raíces y restos aéreos.
 - Tabla (para un rendimiento muy bueno)
 - » Aporte de 4000 kg de raíces.
 - » Aporte de 3000 kg de parte aérea.
 - » Que contienen aprox 2.1 % de Nitrógeno (147 kg)
 - Coeficiente Isohúmico:
 - Tabla (0.20 para raíz y 0.12 para parte aérea)
 - m.o. generada = (4000 * 0.20) + (3000 * 0.12) = 1160 kg
 - Que fijaran aprox. 58 kg de nitrógeno.

- BALANCE:
 - ENTRADAS (maíz):
 - Restitución al suelo de las raíces y paja.
 - Tabla (para un rendimiento bueno)
 - » Aporte de 3000 kg de raíces
 - » Y de 6000 kg de paja
 - » Que contienen aprox 0.7 % de Nitrógeno (63 kg)
 - Coeficiente Isohúmico:
 - Tabla (0.15 para raíz y 0.12 para parte aérea)
 - m.o. generada = (3000 * 0.15) + (6000 * 0.12) = 1170 kg
 - Que fijaran aprox. 59 kg de nitrógeno.

- BALANCE:
 - ENTRADAS (estiércol):
 - Aporte por estiércol.
 - » Aporte de 2000 kg de ovino
 - » Que contienen aprox 6.7 % de Nitrógeno (134 kg)
 - Coeficiente Isohúmico:
 - Tabla (0.35)
 - m.o. generada = 2000 * 0.35 = 700 kg
 - Que fijaran aprox. 35 kg de nitrógeno.

En kg / ha	Año 1	Año 2	Año 3	Año 4	Año 5	Año 6
	Alaf.	Alf.	Alf.	Alf.	Maiz	Maiz (estiercol)
Salidas.	1435	1435	1435	1435	1435	1435
Entradas.	800	800	800	1160	1170	1170 +700
BALANCE	- 635	- 635	- 635	- 275	- 265	+ 435
Balance Global						- 2010

En kg / ha	Año 1	Año 2	Año 3	Año 4	Año 5	Año 6
	Alaf.	Alf.	Alf.	Alf.	Maiz	Maiz (estiercol)
Entradas N.	84	84	84	147	63	63 + 134
Fijación N.	40	40	40	58	59	59 + 35
BALANCE	+ 44	+ 44	+ 44	+ 89	+ 4	+ 103

• BIBLIOGRAFÍA.

- Porta, J.; Lopez-Acevedo, M.; Roquero, C.: EDAFOLOGÍA PARA LA AGRICULTURA Y EL MEDIO AMBIENTE. Ed. Mundi-Prensa. 849 pp. 2ª ed. España (1999).
- Boixadera, J.; Teira, M.R.(eds.): APLICACIÓN AGRÍCOLA DE RESIDUOS ORGÁNICOS. Ed.Universitat de Lleida. 356 pp. Lleida (2001).
- Saña, J.; y col.: LA GESTIÓN DE LA FERTILIDAD DE LOS SUELOS. Ed. Ministerio de Agricultura Pesca y Alimentación. 277 pp. Madrid (1996).
- Labrador, J.: LA MATERIA ORGÁNICA EN LOS AGROECOSISTEMAS. Ed. Mundi-Prensa. 293 pp. España (1996).
- Informaciones Técnicas (número extraordinario): FERTILIZACIÓN NITROGENADA. GUIA DE ACTUALIZACIÓN. Ed. Gobierno de Aragón. 196 pp. Zaragoza (2006).